全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

DOI: 10.1155/2014/686925

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the room temperature (25–30°C) green synthesis of cobalt nanomaterial (CoNM) in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9?nm in dimensions. The highly stable CoNM were used to study their catalytic activity for removal of azo dyes by selecting methyl orange as a model compound. The results revealed that 0.4?mg of CoNM has shown 100% removal of dye from 50?μM aqueous solution of methyl orange. The synthesized CoNM can be easily recovered and recycled several times without decrease in their efficiency. 1. Introduction Metal nanoparticles have attracted much attention in nanoscale science and engineering technology over the past decades due to their unusual chemical and physical properties, such as catalytic activity, novel electronic, and optical and magnetic properties. Their main application areas include catalysts, absorbents, chemical and biological sensors, optoelectronics, information storage, and photonic and electronic devices [1]. Cobalt nanomaterial (CoNM) exhibits high resistance to oxidation, corrosion, and wear. CoNM have been prepared by several synthetic methods including solvothermal process [2], thermal decomposition method [3], hydrothermal microemulsion process [4], high temperature solution phase method [5], and reduction by NaBH4 at room temperature [6]. Among all, the wet chemical reduction method has the advantage over the others in easy control of the reaction process. However, most of the wet chemical reduction methods reported to date rely strongly on the use of environmentally and biologically hazardous organic solvents and reducing agents (i.e., hydrazine, sodium borohydride, dimethyl formamide, formaldehyde, sodium hypophosphite, or hydroxylamine hydrochloride, etc.) [1]. Recently, there is an increased emphasis on the subject of green chemistry, to avoid the problems related to toxic chemicals and solvents. Nanomaterials prepared by green rout are environmentally benevolent. Raveendran et al. [7] prepared silver nanoparticles using water as a solvent, β-D-glucose as a reducing agent, and starch as a protecting agent. Liu et al. [8] synthesized gold nanocrystals using β-D-glucose as both the reducing and stabilizing agent. In addition Xiong et al. [1], worked on the synthesis of highly stable nanosized copper

References

[1]  J. Xiong, Y. Wang, Q. Xue, and X. Wu, “Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid,” Green Chemistry, vol. 13, no. 4, pp. 900–904, 2011.
[2]  L. P. Zhu, W. D. Zhang, H. M. Xiao, Y. Yang, and S. Y. Fu, “Facile synthesis of metallic Co hierarchical nanostructured microspheres by a simple solvothermal process,” The Journal of Physical Chemistry C, vol. 112, no. 27, pp. 10073–10078, 2008.
[3]  N. Matoussevitch, A. Gorschinski, W. Habicht et al., “Surface modification of metallic Co nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 92–96, 2007.
[4]  W. Liu, W. Zhong, X. Wu, N. Tang, and Y. Du, “Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures,” Journal of Crystal Growth, vol. 284, no. 3-4, pp. 446–452, 2005.
[5]  Y. Su, X. OuYang, and J. Tang, “Spectra study and size control of cobalt nanoparticles passivated with oleic acid and triphenylphosphine,” Applied Surface Science, vol. 256, no. 8, pp. 2353–2356, 2010.
[6]  X. Liang and L. Zhao, “Room-temperature synthesis of air-stable cobalt nanoparticles and their highly efficient adsorption ability for Congo red,” RSC Advances, vol. 2, no. 13, pp. 5485–5487, 2012.
[7]  P. Raveendran, J. Fu, and S. L. Wallen, “Completely “green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[8]  J. Liu, G. Qin, P. Raveendran, and Y. Ikushima, “Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals,” Chemistry, vol. 12, no. 8, pp. 2131–2138, 2006.
[9]  G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, and F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” Journal of Nanoparticle Research, vol. 10, no. 8, pp. 1343–1348, 2008.
[10]  W. Wang, Q. Chen, C. Jiang, D. Yang, X. Liu, and S. Xu, “One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone),” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 301, no. 1–3, pp. 73–79, 2007.
[11]  Y. Chen, L. Hu, M. Wang, Y. Min, and Y. Zhang, “Self-assembled Co3O4 porous nanostructures and their photocatalytic activity,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 336, no. 1–3, pp. 64–68, 2009.
[12]  K. Zhang and W. C. Oh, “The photocatalytic decomposition of different organic dyes under UV irradiation with and without H2O2 on Fe-ACF/TiO2 photocatalysts,” Journal of the Korean Ceramic Society, vol. 46, no. 6, pp. 561–567, 2009.
[13]  C. Umpuch and S. Sakaew, “Removal of methyl orange from synthetic wastewater onto chitosan-coated-montmorillonite clay in fixed-beds,” GMSARN International Journal, vol. 6, pp. 175–180, 2012.
[14]  D. Kamel, A. Sihem, C. Halima, and S. Tahar, “Decolourization process of an azo?que dye (Congo red) by photochemical methods in homogeneous medium,” Desalination, vol. 247, no. 1–3, pp. 412–422, 2009.
[15]  A. E. Fazary, M. Taha, and Y. H. Ju, “Iron complexation studies of gallic acid,” Journal of Chemical & Engineering Data, vol. 54, no. 1, pp. 35–42, 2008.
[16]  K. W. Huang, C. J. Yu, and W. L. Tseng, “Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion,” Biosensors and Bioelectronics, vol. 25, no. 5, pp. 984–989, 2010.
[17]  V. V. Matveev, D. A. Baranov, G. Y. Yurkov, N. G. Akatiev, I. P. Dotsenko, and S. P. Gubin, “Cobalt nanoparticles with preferential hcp structure: a confirmation by X-ray diffraction and NMR,” Chemical Physics Letters, vol. 422, no. 4–6, pp. 402–405, 2006.
[18]  N. S. Gajbhiye, S. Sharma, A. K. Nigam, and R. S. Ningthoujam, “Tuning of single to multi-domain behavior for monodispersed ferromagnetic cobalt nanoparticles,” Chemical Physics Letters, vol. 466, no. 4–6, pp. 181–185, 2008.
[19]  M. Alagiri, C. Muthamizhchelvan, and S. Hamid, “Synthesis of superparamagnetic cobalt nanoparticles through solvothermal process,” Journal of Materials Science: Materials in Electronics, vol. 24, no. 11, pp. 4157–4160, 2013.
[20]  Q. Song, X. Ai, D. Wang et al., “Preparation of gold/triblock copolymer composite nanoparticles,” Journal of Nanoparticle Research, vol. 2, no. 4, pp. 381–385, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133