全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Blending on Strength Distribution of Ambient Cured Metakaolin and Palm Oil Fuel Ash Based Geopolymer Mortar

DOI: 10.1155/2014/658067

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the influence of blending of metakaolin with silica rich palm oil fuel ash (POFA) on the strength distribution of geopolymer mortar. The broadness of strength distribution of quasi-brittle to brittle materials depends strongly on the existence of flaws such as voids, microcracks, and impurities in the material. Blending of materials containing alumina and silica with the objective of improving the performance of geopolymer makes comprehensive characterization necessary. The Weibull distribution is used to study the strength distribution and the reliability of geopolymer mortar specimens prepared from 100% metakaolin, 50% and 70% palm and cured under ambient condition. Mortar prisms and cubes were used to test the materials in flexure and compression, respectively, at 28 days and the results were analyzed using Weibull distribution. In flexure, Weibull modulus increased with POFA replacement, indicating reduced broadness of strength distribution from an increased homogeneity of the material. Modulus, however, decreased with increase in replacement of POFA in the specimens tested under compression. It is concluded that Weibull distribution is suitable for analyses of the blended geopolymer system. While porous microstructure is mainly responsible for flexural failure, heterogeneity of reaction relics is responsible for the compression failure. 1. Introduction Concrete made from Portland cement is described as quasi-brittle with features strongly influenced by mechanical and chemical behavior of micro- to mesostructures when subjected to stresses [1]. The fracture behavior is thus affected by the existence of microdefects in the form of microcracks, voids, and weak heterogeneous zones in the material [1–3]. Consideration of hardened concrete fracture behavior is therefore paramount in structural safety assessment [4]. The random nature of cracks or flaws brings about scatter in strength and therefore lends support for statistical consideration. Normal distribution has been commonly used to describe the strength behavior of concrete materials. The use of the normal distribution is appealing because of its simplicity. However, it is limited by parameter prescription of scale factor extending to negative values even though the strength at fracture of a material cannot take on values less than zero [5]. Furthermore, the chance of obtaining the crack size greater than critical crack increases with volume of test specimens and this volume dependency is responsible for a decrease in the mean strength as the volume of specimen increases

References

[1]  S. M. Vrech and G. Etse, “Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 1–4, pp. 136–147, 2009.
[2]  J. H. Andreasen, “Reliability-based design of ceramics,” Materials & Design, vol. 15, no. 1, pp. 3–13, 1994.
[3]  A. Carpinteri, J. Xu, G. Lacidogna, and A. Manuello, “Reliable onset time determination and source location of acoustic emissions in concrete structures,” Cement and Concrete Composites, vol. 34, no. 4, pp. 529–537, 2012.
[4]  M. H. A. Beygi, M. T. Kazemi, I. M. Nikbin, and J. V. Amiri, “The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete,” Materials & Design, vol. 50, pp. 267–276, 2013.
[5]  M. Elgueta, G. Díaz, S. Zamorano, and P. Kittl, “On the use of the Weibull and the normal cumulative probability models in structural design,” Materials and Design, vol. 28, no. 9, pp. 2496–2499, 2007.
[6]  B. Basu, D. Tiwari, D. Kundu, and R. Prasad, “Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?” Ceramics International, vol. 35, no. 1, pp. 237–246, 2009.
[7]  R. Danzer, P. Supancic, J. Pascual, and T. Lube, “Fracture statistics of ceramics—weibull statistics and deviations from Weibull statistics,” Engineering Fracture Mechanics, vol. 74, no. 18, pp. 2919–2932, 2007.
[8]  P. J. Tumidajski, L. Fiore, T. Khodabocus, M. Lachemi, and R. Pari, “Comparison of Weibull and normal distributions for concrete compressive strengths,” Canadian Journal of Civil Engineering, vol. 33, no. 10, pp. 1287–1292, 2006.
[9]  J. B. Quinn and G. D. Quinn, “A practical and systematic review of Weibull statistics for reporting strengths of dental materials,” Dental Materials, vol. 26, no. 2, pp. 135–147, 2010.
[10]  B. Stawarczyk, M. ?zcan, A. Trottmann, C. H. F. H?mmerle, and M. Roos, “Evaluation of flexural strength of hipped and presintered zirconia using different estimation methods of Weibull statistics,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 10, pp. 227–234, 2012.
[11]  T.-F. Wong, R. H. C. Wong, K. T. Chau, and C. A. Tang, “Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock,” Mechanics of Materials, vol. 38, no. 7, pp. 664–681, 2006.
[12]  ASTMC1239-07, Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distrbution Parameters for Advanced Ceramics, ASTM International, West Conshohocken, Pa, USA, 2007.
[13]  M. Diamaruya, H. Kobayashi, and T. Nonaka, “Impact tensile strength and fracture of concrete,” Journal de Physique IV France, vol. 7, pp. C3-253–C3-258, 1997.
[14]  X. Chen, S. Wu, and J. Zhou, “Analysis of mechanical properties of concrete cores using statistical approach,” Magazine of Concrete Research, vol. 65, no. 24, pp. 1463–1471, 2013.
[15]  P. K. Sarker, R. Haque, and K. V. Ramgolam, “Fracture behaviour of heat cured fly ash based geopolymer concrete,” Materials and Design, vol. 44, pp. 580–586, 2013.
[16]  Z. Pan, J. G. Sanjayan, and B. V. Rangan, “Fracture properties of geopolymer paste and concrete,” Magazine of Concrete Research, vol. 63, no. 10, pp. 763–771, 2011.
[17]  Y. J. Zhang, S. Li, Y. C. Wang, and D. L. Xu, “Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature,” Journal of Non-Crystalline Solids, vol. 358, no. 3, pp. 620–624, 2012.
[18]  G. Habert, J. B. D'Espinose De Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends,” Journal of Cleaner Production, vol. 19, no. 11, pp. 1229–1238, 2011.
[19]  C. Kuenzel, L. J. Vandeperre, S. Donatello, A. R. Boccaccini, and C. Cheeseman, “Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers,” Journal of the American Ceramic Society, vol. 95, no. 10, pp. 3270–3277, 2012.
[20]  J. L. Bell and W. M. Kriven, “Preparation of ceramic foams from metakaolin-based geopolymer gels,” in Developments in Strategic Materials: Ceramic Engineering and Science Proceedings, Volume 29, Issue 10, pp. 96–111, John Wiley & Sons, 2009.
[21]  D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement and Concrete Research, vol. 37, no. 12, pp. 1583–1589, 2007.
[22]  K. Trustrum and A. D. S. Jayatilaka, “On estimating the Weibull modulus for a brittle material,” Journal of Materials Science, vol. 14, no. 5, pp. 1080–1084, 1979.
[23]  X. X. He and Z. H. Xie, “Experimental study on statistical parameters of concrete strength based on weibull probability distribution,” Key Engineering Materials, vol. 477, pp. 224–232, 2011.
[24]  J. He, “Sytheses and characterization of geopolymers for infrastructural applications,” in Civil and Environmental Engineering, p. 115, Louisiana State University and Agricultural and Mechanical College, 2012.
[25]  J. He, J. Zhang, Y. Yu, and G. Zhang, “The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study,” Construction and Building Materials, vol. 30, pp. 80–91, 2012.
[26]  R. Gettu, Z. P. Bazant, and M. E. Karr, “Fracture properties and brittleness of high-strength concrete,” ACI Materials Journal, vol. 87, no. 6, pp. 608–618, 1990.
[27]  P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer, “Understanding the relationship between geopolymer composition, microstructure and mechanical properties,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269, no. 1–3, pp. 47–58, 2005.
[28]  A. Hawa, D. Tonnayopas, and W. Prachasaree, “Performance evaluation and microstructure characterization of metakaolin-based geopolymer containing oil palm ash,” The ScientificWorld Journal, vol. 2013, Article ID 857586, 9 pages, 2013.
[29]  R. R. Lloyd, “Accelerated ageing of geopolymers,” in Geopolymers, Structure, Processing, Properties and Industrial Applications, J. L. Provis and J. S. J. van Derventer, Eds., pp. 139–166, Woodhead Publishing, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413