全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Li+ Codoping on the Optical Properties of SrAl2O4 Long Afterglow Ceramic Phosphors

DOI: 10.1155/2014/459065

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rare-earths codoped long afterglow strontium aluminate phosphors with high brightness were synthesized via a facile combustion synthesis method using urea as a fuel. The resulted phosphor particles were analyzed by using X-ray diffraction and field emission scanning electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The prepared SrAl2O4:Eu2+, Dy3+, Li+ samples showed a broad green-yellowish emission, peaking at 512?nm when excited by 348?nm. Compared to traditional SrAl2O4:Eu2+, Dy3+ phosphor, the initial luminescence brightness of SrAl2O4:Eu2+, Dy3+, codoped with Li+ improved from 1.89?cd/m2 to 2.71?cd/m2 and the afterglow decay time was prolonged from 103 to 121?min. The possible mechanism of SrAl2O4:Eu2+, Dy3+, Li+ phosphorescence enhancement has been discussed. 1. Introduction Long afterglow phosphor is a kind of energy-storing material, which can absorb the light photons, store the energy, and then release the energy as visible light. Alkaline aluminates based phosphor materials generally generate more defect-related traps when they are doped with rare-earths RE. The luminescence emission of these RE-doped alkaline aluminates is strongly dependent on the host lattice and can occur from the ultraviolet to the red region. For example, CaAl4O7:Eu2+, Dy3+ phosphors exhibited a broad blue emission band with the main peak at 445?nm [1]. The emission colour of MgAl4O7:Eu2+, Dy3+ nanoparticles shifts from bluish (700°C) to reddish (900°C) with increasing calcination temperature [2]. Recently, strontium aluminates activated with rare-earths have attracted a lot of attention since they exhibit excellent properties such as long afterglow time, high quantum efficiency, good phase stability, and bright emitting color [3], when compared with known sulfide long afterglow phosphors. Since the lifetime greatly exceeds that of any other material, this offers an unexpectedly large field of applications for the use of these aluminates [4, 5]. Although many studies have examined the optical properties of RE-doped alkaline aluminates, only a few have investigated the codoping of three or more different ions in the same host material. It is also known that optical properties of phosphorescent materials are strongly influenced by the incorporation of auxiliary activators. Among them, smaller cationic radius of Li+ ions are favored for their movement and site occupation in the host matrix and these advantages make them attractive for tailoring the crystal field of host lattice [6]. There are many reports on significant

References

[1]  A. N. Yerpude and S. J. Dhoble, “Combustion synthesis of blue-emitting submicron CaAl4O7:Eu2+, Dy3+ persistence phosphor,” Luminescence, vol. 27, no. 6, pp. 450–454, 2012.
[2]  A. S. Maia, R. Stefani, C. A. Kodaira, M. C. F. C. Felinto, E. E. S. Teotonio, and H. F. Brito, “Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol-gel method,” Optical Materials, vol. 31, no. 2, pp. 440–444, 2008.
[3]  B. Cheng, Z. Znang, Z. Han, Y. Xiao, and S. Lei, “SrAl2O4:Eu2+,Dy3+ nanobelts: synthesis by combustion and properties of long-persistent phosphorescence,” Journal of Materials Research, vol. 26, pp. 2311–2315, 2011.
[4]  G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer, Berlin, Germany, 1994.
[5]  W. He, T. S. Atabaev, H. K. Kim, and Y. H. Hwang, “Enhanced sunlight harvesting of dye-sensitized solar cells assisted with long persistent phosphor materials,” The Journal of Physical Chemistry C, vol. 117, no. 35, pp. 17894–17900, 2013.
[6]  T. S. Atabaev, Z. Piao, Y. H. Hwang, H. K. Kim, and N. H. Hong, “Bifunctional Gd2O3:Er3+ particles with enhanced visible upconversion luminescence,” Journal of Alloys and Compounds, vol. 572, pp. 113–117, 2013.
[7]  S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” Journal of Luminescence, vol. 114, no. 3-4, pp. 275–280, 2005.
[8]  G. Rajan and K. G. Gopchandran, “Effect of substrates on the photoemission properties of Li doped Gd2O3:Eu3+ nanocrystalline films,” Optical Materials, vol. 33, no. 3, pp. 494–500, 2011.
[9]  T. S. Atabaev, H. H. T. Vu, Z. Piao, Y. H. Hwang, and H. K. Kim, “Tailoring the luminescent properties of Gd2O3:Tb3+ phosphor particles by codoping with Al3+ ions,” Journal of Alloys and Compounds, vol. 541, pp. 263–268, 2012.
[10]  Q. Du, G. Zhou, J. Zhou, X. Jia, and H. Zhou, “Enhanced luminescence of novel Y2Zr2O 7:Dy3+ phosphors by Li+ co-doping,” Journal of Alloys and Compounds, vol. 552, pp. 152–156, 2013.
[11]  L. Li, H. K. Yang, B. K. Moon, et al., “Photoluminescence properties of CeO2:Eu3+ nanoparticles synthesized by a sol-gel method,” The Journal of Physical Chemistry C, vol. 113, pp. 610–617, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133