全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Agreement Tables with Constant Kappa Values

DOI: 10.1155/2014/853090

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kappa coefficients are standard tools for summarizing the information in cross-classifications of two categorical variables with identical categories, here called agreement tables. When two categories are combined the kappa value usually either increases or decreases. There is a class of agreement tables for which the value of Cohen’s kappa remains constant when two categories are combined. It is shown that for this class of tables all special cases of symmetric kappa coincide and that the value of symmetric kappa is not affected by any partitioning of the categories. 1. Introduction In behavioral and biomedical science researchers are often interested in measuring the intensity of a behavior or a disease. Examples are psychologists that assess how anxious a speech-anxious subject appears while giving a talk, pathologists that rate the severity of lesions from scans, or competing diagnostic devices that classify the extent of a disease in patients into categories. These phenomena are typically classified using a categorical rating system, for example, with categories (A) slight, (B) moderate, and (C) extreme. Because ratings usually entail a certain degree of subjective judgment, researchers frequently want to assess the reliability of the categorical rating system that is used. One way to do this is to assign two observers to rate independently the same set of subjects. The reliability of the rating system can then be assessed by analyzing the agreement between the observers. High agreement between the ratings can be seen as a good indication of consensus in the diagnosis and interchangeability of the ratings of the observers. Various statistical methodologies have been developed for analyzing agreement of a categorical rating system [1, 2]. For instance, loglinear models can be used for studying the patterns of agreement and sources of disagreement [3, 4]. However, in practice researchers often want to express the agreement between the raters in a single number. In this context, standard tools for summarizing agreement between observers are coefficients Cohen’s kappa in the case of nominal categories [5–7] and weighted kappa in the case of ordinal categories [8–11]. With ordinal categories one may expect more disagreement or confusion on adjacent categories than on categories that are further apart. Weighted kappa allows the user to specify weights to describe the closeness between categories [12]. Both Cohen’s kappa and weighted kappa are corrected for agreement due to chance. The coefficients were originally proposed in the context of agreement

References

[1]  U. Jakobsson and A. Westergren, “Statistical methods for assessing agreement for ordinal data,” Scandinavian Journal of Caring Sciences, vol. 19, no. 4, pp. 427–431, 2005.
[2]  M. Maclure and W. C. Willett, “Misinterpretation and misuse of the Kappa statistic,” The American Journal of Epidemiology, vol. 126, no. 2, pp. 161–169, 1987.
[3]  A. Agresti, “Modelling patterns of agreement and disagreement,” Statistical Methods in Medical Research, vol. 1, no. 2, pp. 201–218, 1992.
[4]  A. Agresti, Categorical Data Analysis, Wiley, Hoboken, NJ, USA, 2002.
[5]  J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement, vol. 20, pp. 37–46, 1960.
[6]  L. M. Hsu and R. Field, “Interrater agreement measures: comments on , Cohen's Kappa, Scott's , and Aickin's α,” Understanding Statistics, vol. 2, no. 3, pp. 205–219, 2003.
[7]  M. J. Warrens, “Cohen's kappa can always be increased and decreased by combining categories,” Statistical Methodology, vol. 7, no. 6, pp. 673–677, 2010.
[8]  J. Cohen, “Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit,” Psychological Bulletin, vol. 70, no. 4, pp. 213–220, 1968.
[9]  J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability,” Educational and Psychological Measurement, vol. 33, pp. 613–619, 1973.
[10]  S. Vanbelle and A. Albert, “A note on the linearly weighted kappa coefficient for ordinal scales,” Statistical Methodology, vol. 6, no. 2, pp. 157–163, 2009.
[11]  M. J. Warrens, “Some paradoxical results for the quadratically weighted kappa,” Psychometrika, vol. 77, no. 2, pp. 315–323, 2012.
[12]  M. J. Warrens, “Conditional inequalities between Cohen's kappa and weighted kappas,” Statistical Methodology, vol. 10, pp. 14–22, 2013.
[13]  H. J. A. Schouten, “Nominal scale agreement among observers,” Psychometrika, vol. 51, no. 3, pp. 453–466, 1986.
[14]  A. Agresti, Categorical Data Analysis, Wiley, New York, NY, USA, 1990.
[15]  Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, Mass, USA, 1975.
[16]  J. L. Fleiss, J. Cohen, and B. S. Everitt, “Large sample standard errors of kappa and weighted kappa,” Psychological Bulletin, vol. 72, no. 5, pp. 323–327, 1969.
[17]  D. Cicchetti and T. Allison, “A new procedure for assessing reliability of scoring EEG sleep recordings,” The American Journal of EEG Technology, vol. 11, pp. 101–109, 1971.
[18]  C. Schuster, “A note on the interpretation of weighted kappa and its relations to other rater agreement statistics for metric scales,” Educational and Psychological Measurement, vol. 64, no. 2, pp. 243–253, 2004.
[19]  P. Graham and R. Jackson, “The analysis of ordinal agreement data: beyond weighted kappa,” Journal of Clinical Epidemiology, vol. 46, no. 9, pp. 1055–1062, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413