全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India

DOI: 10.1155/2014/972646

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To detect genes encoding carbapenem resistance among Enterobacter species in a tertiary care hospital in central India. Methods. Bacterial identification of Enterobacter spp. isolates from various clinical specimens in patients admitted to intensive care units was performed by routine conventional microbial culture and biochemical tests using standard recommended techniques. Antibiotic sensitivity test was performed by standard Kirby Bauer disc diffusion technique. PCR amplification and automated sequencing was carried out. Transfer of resistance genes was determined by conjugation. Results. A total of 70/130 (53.84%) isolates of Enterobacter spp. were found to exhibit reduced susceptibility to imipenem (diameter of zones of inhibition ≤13?mm) by disc diffusion method. Among 70 isolates tested, 48 (68.57%) isolates showed MIC values for imipenem and meropenem ranging from 32 to 64?mg/L as per CLSI breakpoints. All of these 70 isolates were found susceptible to colistin in vitro as per MIC breakpoints (<0.5?mg/L). PCR carried out on these 48 MBL (IP/IPI) -test positive isolates (12 Enterobacter aerogenes, 31 Enterobacter cloacae, and 05 Enterobacter cloacae complex) was validated by sequencing for beta-lactam resistance genes and result was interpreted accordingly. Conclusion. The study showed MBL production as an important mechanism in carbapenem resistance in Enterobacter spp. and interspecies transfer of these genes through plasmids suggesting early detection by molecular methods. 1. Introduction Beta-lactams are one of the most frequently used classes of antimicrobials in hospital settings, crucial for the treatment of infections caused by Gram-negative bacteria. Enterobacter spp. are common pathogens of Enterobacteriaceae family responsible for nosocomial infections, especially blood stream infections in intensive care units. Enterobacter may produce severe diseases including those of abdomen, lower respiratory tract, urinary tract, meningeal, eye, bone, and surgical site infections [1]. As per National Nosocomial Infection Surveillance System, more than one-third of the Enterobacter spp. are resistant to extended-spectrum cephalosporins in intensive care units [2]. However, of late due to the presence of extended-spectrum beta-lactamase (ESBL) and AmpC enzymes in Enterobacter spp., Carbapenems have become the drug of choice to treat such infections [3]. There has been an increase in incidence of multidrug resistance in these organisms due to dissemination of resistance determinant genes mediated by transposons, plasmids, and gene

References

[1]  W. C. Washington Jr., S. D. Allen, W. M. Janda et al., “The Enterobacteriaceae,” in Color Atlas and Textbook of Diagnostic Microbiology, chapter 6, pp. 211–302, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2006.
[2]  M. S. Favero, R. P. Gaynes, T. C. Horan et al., “National nosocomial infections surveillance (NNIS) report, data summary from October 1986-April 1996, issued May 1996,” American Journal of Infection Control, vol. 24, no. 5, pp. 380–388, 1996.
[3]  D. Paterson, W. Ko, A. Von Gottberg, et al., “In vitro susceptibility and clinical outcomes of bacteremia due to extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae,” Clinical Infectious Diseases, vol. 27, article 956, 1998.
[4]  J. G. Collee, R. S. Miles, and B. Wan, “Tests for the identification of bacteria,” in Mackie and McCartney Practical Medical Microbiology, J. G. Collee, A. G. Fraser, B. P. Marmion, and A. Simmons, Eds., pp. 131–150, Churchill Livingstone, Edinburgh, UK, 14th edition, 1996.
[5]  Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing: Twenty Second Informational Supplement M100-S22, CLSI, Wayne, Pa, USA, 2012.
[6]  European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters (Version 2), 2012, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_2.0_120221.pdf.
[7]  K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong, “Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp.,” Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4623–4629, 2003.
[8]  C. Franklin, L. Liolios, and A. Y. Peleg, “Phenotypic detection of carbapenem-susceptible metallo-β-lactamase- producing gram-negative bacilli in the clinical laboratory,” Journal of Clinical Microbiology, vol. 44, no. 9, pp. 3139–3144, 2006.
[9]  A. Oliver, L. M. Weigel, J. Kamile Rasheed, J. E. McGowan Jr., P. Raney, and F. C. Tenover, “Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 12, pp. 3829–3836, 2002.
[10]  P. Villalón, S. Valdezate, M. J. Medina-Pascual, G. Carrasco, A. Vindel, and J. A. Saez-Nieto, “Epidemiology of the acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of acinetobacter baumannii from Spain,” Journal of Antimicrobial Chemotherapy, vol. 68, no. 3, pp. 550–553, 2013.
[11]  L. Poirel, A. Potron, and P. Nordmann, “OXA-48-like carbapenemases: the phantom menace,” Journal of Antimicrobial Chemotherapy, vol. 67, pp. 1597–1606, 2012.
[12]  S. S. Hong, K. Kim, J. Y. Huh, B. Jung, M. S. Kang, and S. G. Hong, “Multiplex PCR for rapid detection of genes encoding class A carbapenemases,” Annals of Laboratory Medicine, vol. 32, no. 5, pp. 359–361, 2012.
[13]  J. Versalovic, T. Koeuth, and J. R. Lupski, “Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes,” Nucleic Acids Research, vol. 19, no. 24, pp. 6823–6831, 1991.
[14]  L. Vogel, G. Jones, S. Triep, A. Koek, and L. Dijkshoorn, “RAPD typing of Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens and Pseudomonas aeruginosa isolates using standardized reagents,” Clinical Microbiology and Infection, vol. 5, no. 5, pp. 270–276, 1999.
[15]  A. Carattoli, A. Bertini, L. Villa, V. Falbo, K. L. Hopkins, and E. J. Threlfall, “Identification of plasmids by PCR-based replicon typing,” Journal of Microbiological Methods, vol. 63, no. 3, pp. 219–228, 2005.
[16]  P. M. A. Shanahan, B. A. Wylie, P. V. Adrian, H. J. Koornhof, C. J. Thomson, and S. G. B. Amyes, “The prevalence of antimicrobial resistance in human faecal flora in South Africa,” Epidemiology and Infection, vol. 111, no. 2, pp. 221–228, 1993.
[17]  H. Srámová, M. Daniel, V. Absolonová et al., “Epidemiological role of arthropods detectable in health facilities,” Journal of Hospital Infection, vol. 20, no. 4, pp. 281–292, 1992.
[18]  E. Lindh, P. Kjaeldgaard, W. Frederiksen, and J. Ursing, “Phenotypical properties of Enterobacter agglomerans (Pantoea agglomerans) from human, animal and plant sources,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 99, no. 4, pp. 347–352, 1991.
[19]  J. W. Chow, V. L. Yu, and D. M. Shlaes, “Epidemiologic perspectives on Enterobacter for the infection control professional,” The American Journal of Infection Control, vol. 22, no. 4, pp. 195–201, 1994, Review.
[20]  N. S. Matsaniotis, V. P. Syriopoulou, M. C. Theodoridou, K. G. Tzanetou, and G. I. Mostrou, “Enterobacter sepsis in infants and children due to contaminated intravenous fluids,” Infection Control, vol. 5, no. 10, pp. 471–477, 1984.
[21]  C. G. Mayhall, V. A. Lamb, W. E. Gayle Jr., and B. W. Haynes Jr., “Enterobacter cloacae septicemia in a burn center: epidemiology and control of an outbreak,” Journal of Infectious Diseases, vol. 139, no. 2, pp. 166–171, 1979.
[22]  J. P. Flaherty, S. Garcia-Houchins, R. Chudy, and P. M. Arnow, “An outbreak of gram-negative bacteremia traced to contaminated O-rings in reprocessed dialyzers,” Annals of Internal Medicine, vol. 119, no. 11, pp. 1072–1078, 1993.
[23]  S. J. McConkey, D. C. Coleman, F. R. Falkiner, S. R. McCann, and P. A. Daly, “Enterobacter cloacae in a haematology/oncology ward—first impressions,” Journal of Hospital Infection, vol. 14, no. 4, pp. 277–284, 1989.
[24]  L. Verbist, “Epidemiology and sensitivity of 8625 ICU and hematology/oncology bacterial isolates in Europe,” Scandinavian Journal of Infectious Diseases, Supplement, no. 91, pp. 14–24, 1993.
[25]  A. Tsakris, A. P. Johnson, R. C. George, S. Mehtar, and A. C. Vatopoulos, “Distribution and transferability of plasmids encoding trimethoprim resistance in urinary pathogens from Greece,” Journal of Medical Microbiology, vol. 34, no. 3, pp. 153–157, 1991.
[26]  E. Tzelepi, L. S. Tzouvelekis, A. C. Vatopoulos, A. F. Mentis, A. Tsakris, and N. J. Legakis, “High prevalence of stably derepressed class-I β-lactamase expression in multiresistant clinical isolates of Enterobacter cloacae from Greek hospitals,” Journal of Medical Microbiology, vol. 37, no. 2, pp. 91–95, 1992.
[27]  P. E. Varaldo, F. Biavasco, S. Mannelli, R. Pompei, and A. Proietti, “Distribution and antibiotic susceptibility of extraintestinal clinical isolates of Klebsiella, Enterobacter and Serratia species,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 7, no. 4, pp. 495–500, 1988.
[28]  F. Vázquez, M. C. Mendoza, M. H. Villar, F. Pérez, and F. J. Méndez, “Survey of bacteraemia in a Spanish hospital over a decade (1981–1990),” Journal of Hospital Infection, vol. 26, pp. 111–121, 1994.
[29]  N. J. Legakis and A. Tsakris, “Antibiotic resistance mechanisms in gram-negative bacteria: the Greek experience,” International Journal of Experimental and Clinical Chemotherapy, vol. 5, no. 2, pp. 83–91, 1992.
[30]  L. Leibovici, A. J. Wysenbeek, H. Konisberger, Z. Samra, S. D. Pitlik, and M. Drucker, “Patterns of multiple resistance to antibiotics in gram-negative bacteria demonstrated by factor analysis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 11, no. 9, pp. 782–788, 1992.
[31]  Centers for Disease Control and Prevention (CDC), “Detection of Enterobacteriaceae isolates carrying metallo-beta-lactamase—United States, 2010,” Morbidity and Mortality Weekly Report, vol. 59, no. 24, p. 750, 2010.
[32]  A. U. Khan and P. Nordmann, “NDM-1-producing enterobacter cloacae and klebsiella pneumoniae from diabetic foot ulcers in India,” Journal of Medical Microbiology, vol. 61, no. 3, pp. 454–456, 2012.
[33]  C. Lascols, M. Hackel, S. H. Marshall et al., “Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: data from the SMART study (2009),” Journal of Antimicrobial Chemotherapy, vol. 66, no. 9, pp. 1992–1997, 2011.
[34]  M. Castanheira, L. M. Deshpande, D. Mathai, J. M. Bell, R. N. Jones, and R. E. Mendes, “Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 3, pp. 1274–1278, 2011.
[35]  J. Teo, G. Ngan, M. Balm, R. Jureen, P. Krishnan, and R. Lin, “Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals,” Western Pacific Surveillance and Response Journal, vol. 3, no. 1, pp. 19–24, 2012.
[36]  W. Dai, S. Sun, P. Yang, S. Huang, X. Zhang, and L. Zhang, “Characterization of carbapenemases, extended spectrum β-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing,” Infection, Genetics and Evolution, vol. 14, no. 1, pp. 1–7, 2013.
[37]  B. A. Rogers, H. E. Sidjabat, A. Silvey et al., “Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae,” Microbial Drug Resistance, vol. 19, no. 2, pp. 100–103, 2013.
[38]  J. K. Rasheed, B. Kitchel, W. Zhu et al., “New Delhi metallo-β-lactamase-producing enterobacteriaceae, United States,” Emerging Infectious Diseases, vol. 19, no. 6, pp. 870–878, 2013.
[39]  G. Peirano, B. J. Ahmed, J. Fuller, J. E. Rubin, and J. D. Pitout, “Travel-related carbapenemase-producing Gram negatives in Alberta, Canada: the first three years,” Journal of Clinical Microbiology, 2014.
[40]  L. Poirel, M. Yilmaz, A. Istanbullu, et al., “Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit, Istanbul, Turkey,” Antimicrobial Agents and Chemotherapy, 2014.
[41]  W. Jamal, V. O. Rotimi, M. J. Albert, F. Khodakhast, P. Nordmann, and L. Poirel, “High prevalence of VIM-4 and NDM-1 metallo-β-lactamase among carbapenem-resistant enterobacteriaceae,” Journal of Medical Microbiology, vol. 62, no. 8, pp. 1239–1244, 2013.
[42]  L. M. Deshpande, R. N. Jones, T. R. Fritsche, and H. S. Sader, “Occurrence and characterization of carbapenemase-producing enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004),” Microbial Drug Resistance, vol. 12, no. 4, pp. 223–230, 2006.
[43]  J. J. Yan, W. C. Ko, C. L. Chuang, and J. J. Wu, “Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii,” Journal of Antimicrobial Chemotherapy, vol. 50, no. 4, pp. 503–511, 2002.
[44]  F. Luzzaro, J. D. Docquier, C. Colinon et al., “Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 2, pp. 648–650, 2004.
[45]  M. Perilli, M. L. Mezzatesta, M. Falcone et al., “Class I integron-borne blaVIM-1 carbapenemase in a strain of Enterobacter cloacae responsible for a case of fatal pneumonia,” Microbial Drug Resistance, vol. 14, no. 1, pp. 45–47, 2008.
[46]  M. Falcone, M. L. Mezzatesta, M. Perilli et al., “Infections with VIM-1 metallo-β-lactamase-producing Enterobacter cloacae and their correlation with clinical outcome,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3514–3519, 2009.
[47]  M. F. Lee, C. F. Peng, H..J. Hsu, and Y. H. Chen, “Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan,” International Journal of Antimicrobial Agents, vol. 32, no. 6, pp. 475–480, 2008.
[48]  M. Panopoulou, E. Alepopoulou, A. Ikonomidis, A. Grapsa, E. Paspalidou, and S. Kartali-Ktenidou, “Emergence of VIM-12 in Enterobacter cloacae,” Journal of Clinical Microbiology, vol. 48, no. 9, pp. 3414–3415, 2010.
[49]  L. Poirel, A. Ros, A. Carr?r et al., “Cross-border transmission of OXA-48-producing Enterobacter cloacae from Morocco to France,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 5, pp. 1181–1182, 2011.
[50]  A. Carr?r, L. Poirel, M. Yilmaz et al., “Spread of OXA-48-encoding plasmid in Turkey and beyond,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 3, pp. 1369–1373, 2010.
[51]  A. J. Brink, J. Coetzee, C. G. Clay et al., “Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa,” Journal of Clinical Microbiology, vol. 50, no. 2, pp. 525–527, 2012.
[52]  V. A. Ageevets, I. V. Partina, E. S. Lisitsina et al., “Susceptibility of gramnegative carbapenemase-producing bacteria to various group antibiotics,” Antibiot Khimioter, vol. 58, pp. 10–13, 2013 (Russian).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413