全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Validated HPLC Method for Quantification of Pregabalin in Human Plasma Using 1-Fluoro-2,4-dinitrobenzene as Derivatization Agent

DOI: 10.1155/2014/450461

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, a sensitive, simple, and reliable HPLC method for quantification of pregabalin in human plasma was developed and validated. 1-Fluoro-2,4-dinitrobenzene was used as precolumn derivatization agent. For chromatography, an analytical reversed phase (C18) column and a mixture of Na2HPO4 10?mM (pH 8.0)—methanol (35?:?65 v/v) were used as stationary and mobile phase, respectively. Detection was performed using a UV detector tuned at 360?nm. The linearity of the method was tested over the concentration range 1–4500?ng/mL in 500?μL of human plasma and satisfactory results were obtained (r2 > 0.999). The method showed good precision and accuracy in terms of within—between days relative standard deviations and percent deviation from nominated values (in the range of 4.3–12.7% and 2.6–8.0%, resp.). The limit of quantification of the method was found to be 1?ng/mL which is better than previously reported method and indicates its potential application for sensitive bioanalysis. 1. Introduction Pregabalin (Figure 1), (S)-3-(amino ethyl)-5-methylhexanoic acid, an analogue of gamma amino butyric acid (GABA) with lipophilic properties, is a potent agonist of α2δ subunit of voltage dependent calcium channels [1]. Pregabalin reduces release of glutamate, noradrenalin, substance P, serotonin, and dopamine in central nervous system (CNS) [2–4] and could be used for the treatment of pathological conditions such as partial seizure, neuropathic pain, and generalized anxiety disorder [5–9]. After being taken orally, pregabalin is absorbed rapidly and reaches maximum plasma concentration at about 1.3?h [10]. A range of from 3.5 to 4.5?μg/mL was reported after orally administration of 150?mg pregabalin to the volunteers [11]. Figure 1: Chemical structure of pregabalin. For determination of pregabalin in biological fluids, sophisticated methods such as methods based on LC-MS-MS were employed [11–14]. Although most of LC-MS-MS methods are sensitive and reliable, the instruments are too expensive and unavailable in most of clinical laboratories. Furthermore the carry-over and ion suppression effects are main analytical problems of LC-MS methods which are against the routine use of these methods [15, 16]. Pregabalin is an aliphatic agent without any significant chromophore group, which makes difficulty in its quantification by general HPLC-UV methods. Therefore, derivatizing reagents such as o-phthaldialdehyde (OPA), 3-mercaptopropionic acid, and picrylsulfonic acid were usually used to make better determination [10, 17, 18]. Unfortunately, most of these derivatization

References

[1]  M. A. Rogawski and C. P. Taylor, “Calcium channel subunit, a new antiepileptic drug target,” Epilepsy Research, vol. 69, no. 3, pp. 183–272, 2006.
[2]  D. J. Dooley, C. M. Donovan, and T. A. Pugsley, “Stimulus-dependent modulation of [3H]norepinephrine release from rat neocortical slices by gabapentin and pregabalin,” Journal of Pharmacology and Experimental Therapeutics, vol. 295, no. 3, pp. 1086–1093, 2000.
[3]  D. J. Dooley, C. A. Mieske, and S. A. Borosky, “Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin,” Neuroscience Letters, vol. 280, no. 2, pp. 107–110, 2000.
[4]  K. Fink, D. J. Dooley, W. P. Meder et al., “Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex,” Neuropharmacology, vol. 42, no. 2, pp. 229–236, 2002.
[5]  G. Zareba, “New treatment options in the management of fibromyalgia: role of pregabalin,” Neuropsychiatric Disease and Treatment, vol. 4, no. 6, pp. 1193–1201, 2008.
[6]  J. E. Frampton and R. H. Foster, “Pregabalin,” Drugs, vol. 65, no. 1, pp. 111–118, 2005.
[7]  P. Gray, “Pregabalin in the management of central neuropathic pain,” Expert Opinion on Pharmacotherapy, vol. 8, no. 17, pp. 3035–3041, 2007.
[8]  G. Zareba, “Pregabalin: a new agent for the treatment of neuropathic pain,” Drugs of Today, vol. 41, no. 8, pp. 509–516, 2005.
[9]  B. F. Shneker and J. W. McAuley, “Pregabalin: a new neuromodulator with broad therapeutic indications,” Annals of Pharmacotherapy, vol. 39, no. 12, pp. 2029–2037, 2005.
[10]  H. N. Bockbrader, L. L. Radulovic, E. L. Posvar et al., “Clinical pharmacokinetics of pregabalin in healthy volunteers,” The Journal of Clinical Pharmacology, vol. 50, no. 8, pp. 941–950, 2010.
[11]  V. V. Vaidya, S. M. Yetal, S. M. N. Roy, N. A. Gomes, and S. S. Joshi, “LC-MS-MS determination of pregabalin in human plasma,” Chromatographia, vol. 66, no. 11-12, pp. 925–928, 2007.
[12]  U. Mandal, A. K. Sarkar, K. V. Gowda et al., “Determination of pregabalin in human plasma using LC-MS-MS,” Chromatographia, vol. 67, no. 3-4, pp. 237–243, 2008.
[13]  R. Nirogi, V. Kandikere, K. Mudigonda, P. Komarneni, and R. Aleti, “Liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry method for the quantification of pregabalin in human plasma,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 877, no. 30, pp. 3899–3906, 2009.
[14]  G. R. Shah, C. Ghosh, and B. T. Thaker, “Determination of pregabalin in human plasma by electrospray ionisation tandem mass spectroscopy,” Journal of Advanced Pharmaceutical Technology and Research, vol. 1, no. 3, pp. 354–357, 2010.
[15]  N. Rastkari, M. Khoobi, A. Shafiee, M. R. Khoshayand, and R. Ahmadkhaniha, “Development and validation of a simple and sensitive HPLC-UV method for the determination of captopril in human plasma using a new derivatizing reagent 2-naphthyl propiolate,” Journal of Chromatography B, vol. 932, pp. 144–151, 2013.
[16]  N. Rastkari and R. Ahmadkhaniha, “Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of phthalate monoesters in urine samples,” Journal of Chromatography A, vol. 1286, pp. 22–28, 2013.
[17]  D. Berry and C. Millington, “Analysis of pregabalin at therapeutic concentrations in human plasma/serum by reversed-phase HPLC,” Therapeutic Drug Monitoring, vol. 27, no. 4, pp. 451–456, 2005.
[18]  T. A. C. Vermeij and P. Edelbroek, “Simultaneous high-performance liquid chromatographic analysis of pregabalin, gabapentin and vigabatrin in human serum by precolumn derivatization with o-phtaldialdehyde and fluorescence detection,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 810, no. 2, pp. 297–303, 2004.
[19]  R. S. Gujral, S. M. Haque, and S. Kumar, “A novel method for the determination of pregabalin in bulk pharmaceutical formulations and human urine samples,” African Journal of Pharmacy and Pharmacology, vol. 3, no. 6, pp. 327–334, 2009.
[20]  T. Wu, Q. Jing, B. Ye, and Y. Shen, “Determination of Pregabalin by HPLC with precolumn derivatization using 1-fluoro-2,4-dinitrobenzene,” Journal of Chemical Engineering of Chinese Universities, vol. 2, pp. 350–353, 2010.
[21]  E. Souri, M. Eskandari, M. Barazandeh Tehrani, N. Adib, and R. Ahmadkhaniha, “HPLC determination of pregabalin in bulk and pharmaceutical dosage forms after derivatization with 1-fluoro-2,4-dinitrobenzene,” Asian Journal of Chemistry, vol. 25, no. 13, pp. 7332–7336, 2013.
[22]  R. A.-A. Shaalan, “Spectrofluorimetric and spectrophotometric determination of pregabalin in capsules and urine samples,” International Journal of Biomedical Science, vol. 6, no. 3, pp. 260–267, 2010.
[23]  H. Jalalizadeh, E. Souri, M. B. Tehrani, and A. Jahangiri, “Validated HPLC method for the determination of gabapentin in human plasma using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene and its application to a pharmacokinetic study,” Journal of Chromatography B, vol. 854, no. 1-2, pp. 43–47, 2007.
[24]  F. Garofolo, “Bioanalytical method validation,” in Analytical Method Validation and Instrument Performance Verification, chapter 8, pp. 105–138, Wiley-Interscience, Hoboken, NJ, USA, 2004.
[25]  B. Martinc, R. Roskar, I. Grabnar, and T. Vovk, “Simultaneous determination of gabapentin, pregabalin, vigabatrin, and topiramate in plasma by HPLC with fluorescence detection,” Journal of Chromatography B, vol. 962, pp. 82–88, 2014.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413