全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Deposition and Mineralogical Characteristics of Atmospheric Dust in relation to Land Use and Land Cover Change in Delhi (India)

DOI: 10.1155/2014/325612

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study highlights that the increasing urbanization and industrialization in Delhi are responsible for higher fluxes of atmospheric dust and its chemical constituents. Delhi has experienced a drastic change in land use and land cover area during the past two decades. Road lengths of the city have increased by 76% from 1985 to 2011. The number of mobile vehicles has reached 80,52,508 in 2014 from 24,32,295 in 1994. The industrial units in Delhi have increased by 39.54% in 2011 as compared to 1994 value. Atmospheric dust which is originated from soil in this region becomes carbon rich due to interaction of suspended soil with atmospheric pollutants. Emissions of carbonaceous aerosols from coal and petroleum combustions are mainly responsible for silica dominated soil dust transforming into carbon rich particulate matter. Such dust may play very important role in the atmosphere having significant influence on human health, global warming, climate change, radiative forcing, visibility, and cloud formation. It is expected that if the rate of development remains the same, green cover of the city invariably will be sized down in order to meet the demand of housing, transportation, industries, and so forth in proportion to the rising population. 1. Introduction Generally, atmospheric dust represents airborne particles in the size range <1?μm to ~75?μm [1, 2]. Atmospheric mineral dust is mainly emitted from arid and dry regions followed by its transportation to distant places through high speed winds. In addition, open land, grazing fields, ploughing, vehicle use, and unpaved roads, and so forth, are also important sources of dust [3]. According to Jickells and coworkers (2005), around one-third of the global land area is considered a potential source of atmospheric dust [4]. Global distribution of atmospheric dust has been thoroughly modelled by Tegen and Fung (1994; 1995) [5, 6]. The abundance of dust in the air is controlled by factors such as vegetation cover, precipitation, wind velocity, and soil moisture [7]. Dust mainly consists of loose particles contributed by soil erosion, road transport, industries, volcanic eruptions, and so forth. The atmospheric mineral dust plays an important role in controlling various atmospheric processes such as radiative forcing, cloud characteristics, precipitation, and atmospheric chemistry [8, 9]. Dust aerosols impact these processes according to their size distribution, origin, and lifetime in the atmosphere [5, 6, 10–12]. Mineral dust has significant influence on ecosystem, environment, and biogeochemical cycles

References

[1]  IUPAC, “Glossary of atmospheric chemistry terms. International Union of Pure and Applied Chemistry, Applied Chemistry Division, Commission on Atmospheric Chemistry,” Pure and Applied Chemistry, vol. 62, no. 11, pp. 2167–2219, 1990.
[2]  H. Maring, D. L. Savoie, M. A. Izaguirre, L. Custals, and J. S. Reid, “Mineral dust aerosol size distribution change during atmospheric transport,” Journal of Geophysical Research, vol. 108, no. 19, 2003, 10.1029/2002JD002536.
[3]  N. J. Middleton and A. S. Goudie, “Saharan dust: sources and trajectories,” Transactions of the Institute of British Geographers, vol. 26, no. 2, pp. 165–181, 2001.
[4]  T. D. Jickells, Z. S. An, K. K. Andersen et al., “Global iron connections between desert dust, ocean biogeochemistry, and climate,” Science, vol. 308, no. 5718, pp. 67–71, 2005.
[5]  I. Tegen and I. Fung, “Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness,” Journal of Geophysical Research, vol. 99, no. 11, pp. 22897–22914, 1994.
[6]  I. Tegen and I. Fung, “Contribution to the atmospheric mineral aerosol load from land surface modification,” Journal of Geophysical Research, vol. 100, pp. 18707–18726, 1995.
[7]  W. Ta, H. Xiao, J. Qu et al., “Measurements of dust deposition in Gansu Province, China, 1986–2000,” Geomorphology, vol. 57, no. 1-2, pp. 41–51, 2004.
[8]  M. O. Andreae and P. J. Crutzen, “Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry,” Science, vol. 276, no. 5315, pp. 1052–1058, 1997.
[9]  U. C. Kulshrestha, L. A. K. Reddy, J. Satyanarayana, and M. J. Kulshrestha, “Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region,” Atmospheric Environment, vol. 43, no. 32, pp. 5123–5127, 2009.
[10]  R. J. Charlson, S. E. Schwartz, J. M. Hales et al., “Climate forcing by anthropogenic aerosols,” Science, vol. 255, no. 5043, pp. 423–430, 1992.
[11]  M. O. Andreae, E. Atlas, H. Cachier et al., “Trace gas and aerosol emissions from savanna fires,” in Biomass Burning and Global Change, J. S. Levine, Ed., pp. 278–295, MIT Press, Cambridge, Mass, USA, 1996.
[12]  F. J. Dentener, G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, “Role of mineral aerosol as a reactive surface in the global troposphere,” Journal of Geophysical Research: Atmospheres, vol. 101, no. D17, pp. 22869–22889, 1996.
[13]  C. R. Lawrence and J. C. Neff, “The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition,” Chemical Geology, vol. 267, no. 1-2, pp. 46–63, 2009.
[14]  W. W. Wood and W. E. Sanford, “Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment,” Ground Water, vol. 33, pp. 458–468, 1995.
[15]  F. J. Larney, J. F. Leys, J. F. Müller, and G. H. McTainsh, “Dust and endosulfan deposition in a cotton-growing area of Northern New South Wales, Australia,” Journal of Environmental Quality, vol. 28, no. 2, pp. 692–701, 1999.
[16]  P. J. Lioy, C. P. Weisel, J. R. Millette et al., “Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after collapse of the WTC 11 September 2001,” Environmental Health Perspectives, vol. 110, no. 7, pp. 703–714, 2002.
[17]  M. Mohan, S. K. Pathan, K. Narendrareddy, A. Kandya, and S. Pandey, “Dynamics of urbanization and its impact on land-use/land-cover: a case study of megacity Delhi,” Journal of Environmental Protection, vol. 2, pp. 1274–1283, 2011.
[18]  A. Mukhopadhyay, S. Mukherjee, R. D. Garg, and T. Ghosh, “Spatio-temporal analysis of land use—land cover changes in Delhi using remote sensing and GIS techniques,” International Journal of Geomatics and Geosciences, vol. 4, no. 1, pp. 213–223, 2013.
[19]  M. Punia, P. K. Joshi, and M. C. Porwal, “Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data,” Expert Systems with Applications, vol. 38, no. 5, pp. 5577–5583, 2011.
[20]  DSHB, Delhi Statistical Hand Book 2009–2011, Directorate of Economics and Statistics Government of National Capital Territory of Delhi, 2011, http://www.delhi.gov.in/wps/wcm/connect/doit_des/DES/Our+Services/Statistical+Hand+Book/.
[21]  M. J. Kulshrestha, U. C. Kulshrestha, D. C. Parashar, and M. Vairamani, “Estimation of SO4 contribution by dry deposition of SO2 onto the dust particles in India,” Atmospheric Environment, vol. 37, no. 22, pp. 3057–3063, 2003.
[22]  H. Rodhe, J. Galloway, and Z. Dianwu, “Acidification in southeast Asia: prospects for the coming decades,” Ambio, vol. 21, no. 2, pp. 148–150, 1992.
[23]  “WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update 2005, Summary of risk assessment,” http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf.
[24]  M. S. Krishnan, Geology of India and Burma, CBS Publishers, Delhi, India, 6th edition, 1982.
[25]  F. Ahmad and Z. S. Ahmad, “The fan faults of peninsular India and the origin of the Himalayas,” Tectonophysics, vol. 64, no. 1-2, pp. 97–110, 1980.
[26]  C. I. Davidson and Y. L. Wu, “Dry deposition of particles and vapors,” in Acidic Precipitation, S. E. Lindberg, A. L. Page, and S. A. J. Norton, Eds., vol. 3, Springer, New York, NY, USA, 1989.
[27]  M. Katz, Measurement of Air Pollutants—Guide to Selection of Methods, World Health Organization, Geneva, Switzerland, 1969.
[28]  Economic survey of India, Energy and transport section, http://delhi.gov.in.
[29]  CPCB, “Annual report,” Ministry of Environment & forests, Government of India, 2012, http://cpcb.nic.in/National_Ambient_Air_Quality_Standards.php.
[30]  M. De Angelis and A. Gaudichet, “Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years,” Tellus B, vol. 43, no. 1, pp. 61–75, 1991.
[31]  J. M. Prospero, R. T. Nees, and M. Uematsu, “Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida,” Journal of Geophysical Research-Atmospheres, vol. 92, no. D12, pp. 14723–14731, 1987.
[32]  N. Lancaster, “Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment,” Arctic, Antarctic, and Alpine Research, vol. 34, no. 3, pp. 318–323, 2002.
[33]  F. Amato, M. Pandolfi, M. Viana, X. Querol, A. Alastuey, and T. Moreno, “Spatial and chemical patterns of PM10 in road dust deposited in urban environment,” Atmospheric Environment, vol. 43, no. 9, pp. 1650–1659, 2009.
[34]  U. C. Kulshrestha, “Biomass burning and atmospheric dust: issue of regional significance for climate change in south Asia,” in Proceedings of the International Conference on Climate and Sustainable Management of Natural Resources, ITM University, Gwalior, India, February 2014.
[35]  L. T. Khemani, G. A. Momin, P. S. Prakasa Rao, P. D. Safai, G. Singh, and R. K. Kapoor, “Spread of acid rain over India,” Atmospheric Environment, vol. 23, no. 4, pp. 757–762, 1989.
[36]  U. C. Kulshrestha, M. Jain, R. Sekar, M. Vairamani, A. K. Sarkar, and D. C. Parashar, “Chemical characteristics and source apportionment of aerosols over Indian ocean during INDOEX,” Current Science, vol. 80, pp. 180–185, 1999.
[37]  T. K. Rout, R. E. Masto, P. K. Padhy, J. George, L. C. Ram, and S. Maity, “Dust fall and elemental flux in a coal mining area,” PII: S0375-6742(14)00135-6, 2014.
[38]  M. C. Reheis and R. Kihl, “Dust deposition in southern Nevada and California, 1984–1989: relations to climate, source area, and source lithology,” Journal of Geophysical Research, vol. 100, no. 5, pp. 8893–8918, 1995.
[39]  X. P. Zhao, A. Ackerman, and W. Guo, “Dust and smoke detection for multi-channel imagers,” Remote Sensing, vol. 2, no. 10, pp. 2347–2368, 2010.
[40]  I. A. Parvez, F. Vaccari, and G. F. Panza, “Site-specific microzonation study in Delhi Metropolitan City by 2-D modelling of SH and P-SV waves,” Pure and Applied Geophysics, vol. 161, no. 5-6, pp. 1165–1184, 2004.
[41]  K. Pye, Aeolian Dust and Dust Deposits, Academic Press, San Diego, Calif, USA, 1987.
[42]  U. C. Kulshrestha, N. Kumar, and A. Saxena, “Chemical composition of atmospheric aerosol at three representative sites at Agra,” Energy Environment Monitor, vol. 11, pp. 177–181, 1995.
[43]  U. C. Kulshrestha, “Acid rain,” in Encyclopedia of Environmental Management, Taylor & Francis, Manila Typesetting Company, 2013.
[44]  S. Yadav and V. Rajamani, “Air quality and trace metal chemistry of different size fractions of aerosols in N-NW India—implications for source diversity,” Atmospheric Environment, vol. 40, no. 4, pp. 698–712, 2006.
[45]  A. Rashki, D. G. Kaskaoutis, A. S. Goudie, and R. A. Kahn, “Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, Southeastern Iran,” Science of the Total Environment, vol. 463-464, pp. 552–564, 2013.
[46]  H. Rodhe, F. Dentener, and M. Schulz, “The global distribution of acidifying wet deposition,” Environmental Science and Technology, vol. 36, no. 20, pp. 4382–4388, 2002.
[47]  F. J. Dentener, G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, “Role of mineral aerosol as a reactive surface in the global troposphere,” Journal of Geophysical Research D: Atmospheres, vol. 101, no. 17, pp. 22869–22889, 1996.
[48]  A. Zarasvandi, E. J. M. Carranza, F. Moore, and F. Rastmanesh, “Spatio-temporal occurrences and mineralogical-geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran),” Journal of Geochemical Exploration, vol. 111, no. 3, pp. 138–151, 2011.
[49]  T. Pachauri, V. Singla, A. Satsangi, A. Lakhani, and K. Maharaj Kumari, “SEM-EDX characterization of individual coarse particles in Agra, India,” Aerosol and Air Quality Research, vol. 13, no. 2, pp. 523–536, 2013.
[50]  A. S. Pipal, A. Kulshrestha, and A. Taneja, “Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India,” Atmospheric Environment, vol. 45, no. 21, pp. 3621–3630, 2011.
[51]  U. C. Kulshrestha, B. Kumar, G. P. Gupta, S. Singh, and M. J. Kulshrestha, “Defining criteria for good habitats: importance of bioaerosols, black, carbon and trace gases,” Indian Journal of Air Pollution Control, vol. 7, pp. 24–30, 2012.
[52]  A. Bhattacharjee, H. Mandal, M. Roy, J. Kusz, M. Zubko, and P. Gütlich, “Microstructural and magnetic characterization of dusts from a stone crushing industry in Birbhum, India,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 22, pp. 3724–3727, 2010.
[53]  R. Zhang, Z. Shen, T. Cheng, M. Zhang, and Y. Liu, “The elemental composition of atmospheric particles at Beijing during Asian dust events in spring 2004,” Aerosol and Air Quality Research, vol. 10, no. 1, pp. 67–75, 2010.
[54]  C. Hanumantharao and G. V. Ramana, “Dynamic soil properties for microzonation of Delhi, India,” Journal of Earth System Science, vol. 117, no. 2, pp. 719–730, 2008.
[55]  G. H. McTainsh and P. H. Walker, “Nature and distribution of Harmattan dust,” Zeitschrift fur Geomorphologie, vol. 26, no. 4, pp. 417–435, 1982.
[56]  S. R. Cattle, G. H. McTainsh, and S. Wagner, “?olian dust contributions to soil of the Namoi Valley, northern NSW, Australia,” Catena, vol. 47, no. 3, pp. 245–264, 2002.
[57]  P. N. Owens and O. Slaymaker, “Contemporary and post-glacial rates of aeolian deposition in the Coast Mountains of British Columbia, Canada,” Geografiska Annaler A: Physical Geography, vol. 79, no. 4, pp. 267–276, 1997.
[58]  X. Y. Zhang, R. Arimoto, G. H. Zhu, T. Chen, and G. Y. Zhang, “Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions,” Tellus B: Chemical and Physical Meteorology, vol. 50, no. 4, pp. 317–330, 1998.
[59]  S. K. Marx and H. A. McGowan, “Dust transportation and deposition in a superhumid environment, West Coast, South Island, New Zealand,” Catena, vol. 59, no. 2, pp. 147–171, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133