全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Understanding the Basics of Final Unification with Avogadro Number

DOI: 10.4236/oalib.preprints.1200071, PP. 1-9

Keywords: Avogadro Number, Schwarzschild’s Interaction, Final Unification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Physicists have long suggested that the four observed fundamental forces of nature are separate manifestations of what was once a single force at times close to the Big Bang. If so, magnitude of the unified force can be assumed to be equal to.Strength of any interaction can be defined as the ratio of the operating force magnitude and the magnitude of. Let the gravitational interaction at black holes be called as ‘Schwarzschild interaction’. If strength of Schwarzschild interaction is unity, then weak interaction strength seems to betimes less than the Schwarzschild interaction and strong interaction strength seems to be times less than the Schwarzschild interaction. Based on these concepts and considering the Avogadro number as an absolute and discrete number, basics of final unification can be understood.

References

[1]  P. A. M. Dirac, The cosmological constants. Nature, 139, 323, 1937.
[2]  Witten, Edward. Search for a realistic Kaluza-Klein theory. Nuclear Physics B 186 (3): 412- 428. 1981
[3]  David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. 2005, p 12.
[4]  Abdus Salam. Einstein’s Last Dream: The Space -Time Unification of Fundamental Forces, Physics News, 12(2):36, June 1981.
[5]  Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., 1993, v. A8(4), 321-326.
[6]  Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. posted in the arXives as the e-print physics/0505149, and references therein.
[7]  Hawking S.W. A Brief History of Time. Bantam Dell Publishing Group. 1988
[8]  Dine, Michael. Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press. (2007)
[9]  U. V. S. Seshavatharam and S. Lakshminarayana.  On the Scale Independent Evolving Quantum Black Hole Cosmology. Prespace time journal, Vol 5, issue 9, pp924-942.
[10]  U. V. S. Seshavatharam and S. Lakshminarayana. Nucleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302, 2011
[11]  U. V. S. Seshavatharam and S. Lakshminarayana, Role of Avogadro number in grand unification.   Hadronic Journal. Vol-33, No 5, 2010 October. p 513.
[12]  U. V. S. Seshavatharam and S. Lakshminarayana, To confirm the existence of atomic gravitational constant. Hadronic journal, Vol-34, No 4, 2011 Aug. p379.
[13]  U. V. S. Seshavatharam and S. Lakshminarayana. Logic Behind the Squared Avogadro Number and SUSY. International  Journal of Applied and Natural Sciences. Vol. 2, Issue 2, 23-40 (2013)
[14]  U. V. S. Seshavatharam and S. Lakshminarayana. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56 (2011) p.842
[15]  U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol.19, No.2, (2010), p.263-280.
[16]  U. V. S. Seshavatharam and S. Lakshminarayana. SUSY and strong nuclear gravity in (120-160) GeV mass range. Hadronic journal, Vol-34, No 3, 2011 June, p.277-300
[17]  U. V. S. Seshavatharam and S. Lakshminarayana. New concepts and semi empirical fittings in  understanding SUSY and the four cosmological interactions. Prespace time journal, Vol 4,issue 11, pp1027- 1038.
[18]  Roger Penrose. Chandrasekhar, Black Holes, and Singularities. J. Astrophys. Astr. (1996) 17, 213-231
[19]  Subrahmanyan Chandrasekhar. On Stars, Their Evolution and Their Stability',Nobel Prize lecture,   December 8, 1983.
[20]  G..J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 (1881) 381-390.
[21]  N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1.
[22]  N. Bohr. On the Constitution of Atoms and Molecules. Systems containing only a Single Nucleus. (Part-2) Philos. Mag. 26, 476, 1913
[23]  Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. A 82: 495-500, 1909.
[24]  Michael O. Distler et al. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347,2011
[25]  J. Mohr, B.N. Taylor, and D.B. Newell in arXiv:1203.5425 and Rev. Mod. Phys. (to be published). http://pdg.lbl.gov/2013/reviews/rpp2012-rev-phys-constants.pdf
[26]  K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)
[27]  Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 (2005) p.1605-1618.
[28]  W.D. Myers and W.J. Swiatecki. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. LBL-36803.1994.
[29]  Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G.. Phys.Rev. Lett. 112.068103. (2013) http://dx.doi.org/10.1103/PhysRevLett.111.101102.
[30]  J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kasevich. Atom Interferometer Measurement of the Newtonian Constant of  Gravity, Science 315 (5808): 74-77, (2007).

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133