全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

QPSO versus BSA for Failure Correction of Linear Array of Mutually Coupled Parallel Dipole Antennas with Fixed Side Lobe Level and VSWR

DOI: 10.1155/2014/858290

Full-Text   Cite this paper   Add to My Lib

Abstract:

Evolutionary algorithms play an important role in synthesizing linear array antenna. In this paper, the authors have compared quantum particle swarm optimization (QPSO) and backtracking search algorithms (BSA) in failure correction of linear antenna arrays constructed using half wavelength uniformly spaced dipoles. The QPSO algorithm is a combination of classical PSO and quantum mechanics principles to enhance the performance of PSO and BSA is considered as a modernized PSO using historical populations. These two algorithms are applied to obtain the voltage excitations of the nondefective elements in the failed antenna array such that the necessary objectives, namely, the minimization of parameters like side lobe level (SLL) and voltage standing wave ratio (VSWR), are achieved leading to their values matching closely the desired parameter values. The results of both algorithms are compared in terms of parameters used in the objective function along their statistical parameters. Moreover, in order to reduce the processing time, inverse fast Fourier transform (IFFT) is used to obtain the array factor. In this paper, an example is presented for the application of the above two algorithms for a linear array of 30 parallel half wavelength dipole antennas failed with 4 elements and they clearly show the effectiveness of both the QPSO and BSA algorithms in terms of optimized parameters, statistical values, and processing time. 1. Introduction Any failure in the elements of the antenna array [1] will end up in corruption of radiation pattern and lead to deviation of the radiation pattern parameters, namely, side lobe level, first null beam width (FNBW), half power beam width (HPBW), and so forth, thus leading to degradation in the performance of the communication systems. Researches in the past have clearly depicted various ways of recovery [2–4]. A simple way to recover the radiation pattern is to manually replace the failed antenna elements, which is not quite a better solution when the deformation occurs in applications like satellites, radar, and so forth. Literature survey has revealed that the idea of adjusting the beam weights of the remaining nondefective elements in the array results in production of radiation pattern approaching the original pattern in terms of the radiation pattern parameters being extensively used. Mailloux [2] utilized the idea of replacing the signals in a digitally beam formed array in a multiple Signal environment without laying any restrictions on correlation properties of signals. A method [3] based on evolutionary algorithm,

References

[1]  C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, New York, NY, USA, 2nd edition, 2003.
[2]  R. J. Mailloux, “Array failure correction with a digitally beamformed array,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 12, pp. 1543–1550, 1996.
[3]  B.-K. Yeo and Y. Lu, “Array failure correction with a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 5, pp. 823–828, 1999.
[4]  J. A. Rodríguez, F. Ares, E. Moreno, and G. Franceschetti, “Genetic algorithm procedure for linear array failure correction,” Electronics Letters, vol. 36, no. 3, pp. 196–198, 2000.
[5]  L. L. Wang, D. G. Fang, and W. X. Sheng, “Combination of genetic algorithm (GA) and fast Fourier transform (FFT) for synthesis of arrays,” Microwave and Optical Technology Letters, vol. 37, no. 1, pp. 56–59, 2003.
[6]  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995.
[7]  D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771–779, 2004.
[8]  N. Pathak, B. Basu, and G. K. Mahanti, “Combination of inverse fast Fourier transform and modified particle swarm optimization for synthesis of thinned mutually coupled linear array of parallel half-wave length dipole antennas,” PIER: Progress In Electromagnetics Research M, vol. 16, pp. 105–115, 2011.
[9]  W. P. M. N. Keizer, “Low-sidelobe pattern synthesis using iterative fourier techniques coded in MATLAB,” IEEE Antennas and Propagation Magazine, vol. 51, no. 2, pp. 137–150, 2009.
[10]  R. S. Elliott, Antenna Theory and Design, Prentice-Hall, New York, NY, USA, 1981.
[11]  J. A. Rodriguez, F. Ares, and E. Moreno, “Feeding in-phase dipole arrays: a tutorial and a MATLAB program,” IEEE Antennas and Propagation Magazine, vol. 47, no. 5, pp. 169–173, 2005.
[12]  M. Thevenot, C. Menudier, A. El Sayed Ahmad et al., “Synthesis of antenna arrays and parasitic antenna arrays with mutual couplings,” International Journal of Antennas and Propagation, vol. 2012, Article ID 309728, 22 pages, 2012.
[13]  J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with particles having quantum behavior,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 325–331, Portland, Ore, USA, June 2004.
[14]  J. Sun, W. Xu, and B. Feng, “A global search strategy of quantum behaved Particle swarm optimization,” in Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116, Singapore, December 2004.
[15]  P. Civicioglu, “Backtracking search optimization algorithm for numerical optimization problems,” Applied Mathematics and Computation, vol. 219, no. 15, pp. 8121–8144, 2013.
[16]  P. Civicioglu, “Circular antenna array design by using evolutionary search algorithms,” Progress in Electromagnetics Research B, vol. 54, pp. 265–284, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413