全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Global Stability, Bifurcation, and Chaos Control in a Delayed Neural Network Model

DOI: 10.1155/2014/369230

Full-Text   Cite this paper   Add to My Lib

Abstract:

Conditions for the global asymptotic stability of delayed artificial neural network model of n (≥3) neurons have been derived. For bifurcation analysis with respect to delay we have considered the model with three neurons and used suitable transformation on multiple time delays to reduce it to a system with single delay. Bifurcation analysis is discussed with respect to single delay. Numerical simulations are presented to verify the analytical results. Using numerical simulation, the role of delay and neuronal gain parameter in changing the dynamics of the neural network model has been discussed. 1. Introduction In recent years, neural networks (especially Hopfield type, cellular, bidirectional, and recurrent neural networks) have been applied successfully in many areas such as signal processing, pattern recognition, and associative memories. In most of the research works, stability of the designed neural network is an important step of analyzing the dynamics. Chaos plays an important role in human brain cognitive functions related to memory process. For example, chaotic behavior has been observed in nerve membranes by electrophysiological experiments on squid giant axons [1–3] and in measurements of brain electroencephalograms (EEG) [4, 5]. At first, Aihara et al. [6] introduced chaotic neural network models in order to simulate the chaotic behavior of biological neurons. Both the network and its component neuron are responsible for chaotic dynamics if suitable parameter values are chosen [6, 7]. The investigation of chaotic neural networks is of practical importance and many interesting results have been obtained so far (see [8–11] and the references therein). The control of chaotic behavior in chaotic neural networks is an important problem to apply them in information processing [12]. The first chaos control was proposed by Ott et al. (the OGY method) [13]. Since this pioneer work of OGY, various methods such as the occasional proportional feedback (OPF) method [14], continuous feedback control [15], and pinning method [16] have been proposed for chaos control. Many research works have been done to know the effect of time delays in neural system [17–19]. The malfunctioning of the neural system is often related to changes in the delay parameter causing unmanageable shifts in the phases of the neural signals. In the olfactory system, the phase transition has the appearance of a change in the EEG from a chaotic, aperiodic fluctuation to a more regular nearly periodic oscillation. In fact, neural network with delay can actually synchronize more easily

References

[1]  K. Aihara and G. Matsumoto, “Chaotic oscillations and bifurcations in squid giant axons,” in Chaos, A. V. Holden, Ed., pp. 257–269, 1986.
[2]  G. Matsumoto, K. Aihara, Y. Hanyu, N. Takahashi, S. Yoshizawa, and J.-I. Nagumo, “Chaos and phase locking in normal squid axons,” Physics Letters A, vol. 123, no. 4, pp. 162–166, 1987.
[3]  D. T. Kaplan, J. R. Clay, T. Manning, L. Glass, M. R. Guevara, and A. Shrier, “Subthreshold dynamics in periodically stimulated squid giant axons,” Physical Review Letters, vol. 76, no. 21, pp. 4074–4077, 1996.
[4]  A. Babloyantz and A. Destexhe, “Low-dimensional chaos in an instance of epilepsy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 10, pp. 3513–3517, 1986.
[5]  W. J. Freeman, “Simulation of chaotic EEG patterns with a dynamic model of the olfactory system,” Biological Cybernetics, vol. 56, no. 2-3, pp. 139–150, 1987.
[6]  K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural networks,” Physics Letters A, vol. 144, no. 6-7, pp. 333–340, 1990.
[7]  M. Adachi and K. Aihara, “Associative dynamics in a chaotic neural network,” Neural Networks, vol. 10, no. 1, pp. 83–98, 1997.
[8]  A. Das, A. B. Roy, and P. Das, “Chaos in a three-dimensional general model of neural network,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 10, pp. 2271–2281, 2002.
[9]  X. Li and M. Bohner, “Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback,” Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 643–653, 2010.
[10]  P. Das and A. Kundu, “Bifurcation and chaos in delayed cellular neural network model,” Journal of Applied Mathematics and Physics, vol. 2, pp. 219–224, 2014.
[11]  A. Kundu, P. Das, and A. B. Roy, “Complex dynamics of a four neuron network model having a pair of short-cut connections with multiple delays,” Nonlinear Dynamics, vol. 72, no. 3, pp. 643–662, 2013.
[12]  G. He, Z. Cao, P. Zhu, and H. Ogura, “Controlling chaos in a chaotic neural network,” Neural Networks, vol. 16, no. 8, pp. 1195–1200, 2003.
[13]  E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.
[14]  E. R. Hunt, “Stabilizing high-period orbits in a chaotic system: the diode resonator,” Physical Review Letters, vol. 67, no. 15, pp. 1953–1955, 1991.
[15]  H. Gang and Q. Zhilin, “Controlling spatiotemporal chaos in coupled map lattice systems,” Physical Review Letters, vol. 72, no. 1, pp. 68–71, 1994.
[16]  L. Chen and K. Aihara, “Global searching ability of chaotic neural networks,” IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications, vol. 46, no. 8, pp. 974–993, 1999.
[17]  R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press, Oxford, UK, 2000.
[18]  M. Xiao, W. X. Zheng, and J. Cao, “Bifurcation and control in a neural network with small and large delays,” Neural Networks, vol. 44, pp. 132–142, 2013.
[19]  Y. Song, M. Han, and J. Wei, “Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays,” Physica D, vol. 200, no. 3-4, pp. 185–204, 2005.
[20]  F. M. Atay, J. Jost, and A. Wende, “Delays, connection topology, and synchronization of coupled chaotic maps,” Physical Review Letters, vol. 92, no. 14, 2004.
[21]  E. Eldar, J. D. Cohen, and Y. Niv, “The effects of neural gain on attention and learning,” Nature Neuroscience, vol. 16, no. 8, pp. 1146–1153, 2013.
[22]  B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, UK, 1981.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413