全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Signaling Pathways Involved in Renal Oxidative Injury: Role of the Vasoactive Peptides and the Renal Dopaminergic System

DOI: 10.1155/2014/731350

Full-Text   Cite this paper   Add to My Lib

Abstract:

The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation. 1. Introduction A normal redox state of cells depends on a delicate balance between oxidative species and antioxidant mechanisms. Acting as cellular messengers, reactive oxygen species (ROS) are involved in the destruction of invading pathogens [1]. Chronic inflammatory conditions such as atherosclerosis or hypertension can alter the normal redox state of the cells through an overproduction of free radicals that leads to an increase in oxidative stress with disruption of the normal cellular signaling mechanisms [2–5]. In the kidney, oxidative stress and infiltration of inflammatory cells represent key factors for the development of renal injury and hypertension [6]. Angiotensin II (Ang II) that displays hypertensive and prooxidant properties, by one side, and the atrial natriuretic peptide (ANP) and renal dopamine, by the other side, both with hypotensive and antioxidant properties, are local factors closely related to the development and progression of glomerular and tubular injury [7, 8]. 2. Renin-Angiotensin System and Renal Oxidative Stress Ang II mediates most of the renin angiotensin system (RAS) effects through activation of two types of receptors: Ang II type 1 (AT1R) and Ang II type 2 (AT2R). In the last decades, novel components of the RAS have been recognized, including the (pro) renin

References

[1]  S. Cuevas, V. A. Villar, P. A. Jose, and I. Armando, “Renal dopamine receptors, oxidative stress, and hypertension,” International Journal of Molecular Sciences, vol. 14, no. 9, pp. 17553–17572, 2013.
[2]  P. Yu, W. Han, V. Villar, et al., “Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells,” Redox Biology, vol. 2, pp. 570–579, 2014.
[3]  R. Bretón-Romero and S. Lamas, “Hydrogen peroxide signaling mediator in the activation of p38 MAPK in vascular endothelial cells,” Methods in Enzymology, vol. 528, pp. 49–59, 2013.
[4]  H. S. Chung, S.-B. Wang, V. Venkatraman, C. I. Murray, and J. E. van Eyk, “Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system,” Circulation Research, vol. 112, no. 2, pp. 382–392, 2013.
[5]  J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Are oxidative stress—activated signaling pathways mediators of insulin resistance and β-cell dysfunction?” Diabetes, vol. 52, no. 1, pp. 1–8, 2003.
[6]  D. G. Harrison, T. J. Guzik, H. E. Lob et al., “Inflammation, immunity, and hypertension,” Hypertension, vol. 57, no. 2, pp. 132–140, 2011.
[7]  S. Segerer and D. Schl?ndorff, “Role of chemokines for the localization of leukocyte subsets in the kidney,” Seminars in Nephrology, vol. 27, no. 3, pp. 260–274, 2007.
[8]  Y. Wang, Y.-C. Tay, and D. C. H. Harris, “Proximal tubule cells stimulated by lipopolysaccharide inhibit macrophage activation,” Kidney International, vol. 66, no. 2, pp. 655–662, 2004.
[9]  M. Bader and D. Ganten, “Update on tissue renin-angiotensin systems,” Journal of Molecular Medicine, vol. 86, no. 6, pp. 615–621, 2008.
[10]  H. Kobori, M. Nangaku, L. G. Navar, and A. Nishiyama, “The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease,” Pharmacological Reviews, vol. 59, no. 3, pp. 251–287, 2007.
[11]  H. Kobori, Y. Ozawa, R. Satou, et al., “Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice,” American Journal of Physiology—Renal Physiology, vol. 293, no. 3, pp. F938–F945, 2007.
[12]  M. Franco, F. Martínez, B. Rodríguez-Iturbe, et al., “Angiotensin II, interstitial inflammation, and the pathogenesis of salt-sensitive hypertension,” American Journal of Physiology: Renal Physiology, vol. 291, no. 6, pp. F1281–F1287, 2006.
[13]  D. L. Lee, L. C. Sturgis, H. Labazi et al., “Angiotensin II hypertension is attenuated in interleukin-6 knockout mice,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 290, no. 3, pp. H935–H940, 2006.
[14]  L. G. Navar, L. M. Harrison-Bernard, A. Nishiyama, and H. Kobori, “Regulation of intrarenal angiotensin II in hypertension,” Hypertension, vol. 39, no. 2, pp. 316–322, 2002.
[15]  P. Hernández-Vargas, O. López-Franco, G. Sanjuán et al., “Suppressors of cytokine signaling regulate angiotensin II-activated Janus kinase-signal transducers and activators of transcription pathway in renal cells,” Journal of the American Society of Nephrology, vol. 16, no. 6, pp. 1673–1683, 2005.
[16]  S. Kagami, W. A. Border, D. E. Miller, and N. A. Noble, “Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells,” The Journal of Clinical Investigation, vol. 93, no. 6, pp. 2431–2437, 1994.
[17]  R. A. Gonzalez-Villalobos, S. Billet, C. Kim et al., “Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion,” Journal of the American Society of Nephrology, vol. 22, no. 3, pp. 449–459, 2011.
[18]  S. B. Gurley, A. D. M. Riquier-Brison, J. Schnermann et al., “AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure,” Cell Metabolism, vol. 13, no. 4, pp. 469–475, 2011.
[19]  A. Whaley-Connell, J. Habibi, Z. Panfili et al., “Angiotensin II activation of mTOR results in tubulointerstitial fibrosis through loss of N-cadherin,” The American Journal of Nephrology, vol. 34, no. 2, pp. 115–125, 2011.
[20]  M. C. Prieto-Carrasquero, F. T. Botros, H. Kobori, and L. G. Navar, “Collecting duct renin: a major player in angiotensin II-dependent hypertension,” Journal of the American Society of Hypertension, vol. 3, no. 2, pp. 96–104, 2009.
[21]  M. I. Rosón, S. Cavallero, S. D. Penna, et al., “Acute sodium overload produces renal tubulointerstitial inflammation in normal rats,” Kidney International, vol. 70, no. 8, pp. 1439–1446, 2006.
[22]  S. L. D. Penna, G. Cao, A. Fellet, et al., “Salt-induced downregulation of renal aquaporins is prevented by losartan,” Regulatory Peptides, vol. 177, no. 1–3, pp. 85–91, 2012.
[23]  H. M. Siragy, “Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 1, pp. 50–53, 2006.
[24]  S. L. D. Penna, G. Cao, N. M. Kouyoumdzian et al., “Role of angiotensin II and oxidative stress on renal aquaporins expression in hypernatremic rats,” Journal of Physiology and Biochemistry, vol. 70, no. 2, pp. 465–478, 2014.
[25]  C.-S. Cao, Q. Yin, L. Huang, Z. Zhan, J.-B. Yang, and H.-W. Xiong, “Effect of angiotensin II on the expression of aquaporin 1 in lung of rats following acute lung injury,” Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, vol. 22, no. 7, pp. 426–429, 2010.
[26]  A. M. Jensen, C. Li, H. A. Praetorius, et al., “Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction,” American Journal of Physiology: Renal Physiology, vol. 291, no. 5, pp. F1021–F1032, 2006.
[27]  J. L. Zhuo, X. C. Li, J. L. Garvin, L. G. Navar, and O. A. Carretero, “Intracellular ANG II induces cytosolic Ca2+ mobilization by stimulating intracellular AT1 receptors in proximal tubule cells,” American Journal of Physiology—Renal Physiology, vol. 290, no. 6, pp. F1382–F1390, 2006.
[28]  R. N. Re, “On the biological actions of intracellular angiotensin,” Hypertension, vol. 35, no. 6, pp. 1189–1190, 2000.
[29]  J. L. Cook, Z. Zhang, and R. N. Re, “In vitro evidence for an intracellular site of angiotensin action,” Circulation Research, vol. 89, no. 12, pp. 1138–1146, 2001.
[30]  H. Haller, C. Lindschau, B. Erdmann, P. Quass, and F. C. Luft, “Effects of intracellular angiotensin II in vascular smooth muscle cells,” Circulation Research, vol. 79, no. 4, pp. 765–772, 1996.
[31]  X. C. Li and J. L. Zhuo, “Intracellular ANG II directly induces in vitro transcription of TGF-β1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors,” American Journal of Physiology: Cell Physiology, vol. 294, no. 4, pp. C1034–C1045, 2008.
[32]  R. M. Carey, “Update on the role of the AT2 receptor,” Current Opinion in Nephrology and Hypertension, vol. 14, no. 1, pp. 67–71, 2005.
[33]  S. Adler and H. Huang, “Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase,” American Journal of Physiology—Renal Physiology, vol. 287, no. 5, pp. F907–F913, 2004.
[34]  S. Higuchi, H. Ohtsu, H. Suzuki, H. Shirai, G. D. Frank, and S. Eguchi, “Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology,” Clinical Science, vol. 112, no. 7-8, pp. 417–428, 2007.
[35]  M. Ushio-Fukai, R. W. Alexander, M. Akers, P. R. Lyons, B. Lassègue, and K. K. Griendling, “Angiotensin II receptor coupling to phospholipase D is mediated by the γ subunits of heterotrimeric G proteins in vascular smooth muscle cells,” Molecular Pharmacology, vol. 55, no. 1, pp. 142–149, 1999.
[36]  P. K. Mehta and K. K. Griendling, “Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system,” American Journal of Physiology: Cell Physiology, vol. 292, no. 1, pp. C82–C97, 2007.
[37]  H. Nakashima, H. Suzuki, H. Ohtsu et al., “Angiotensin II regulates vascular and endothelial dysfunction: recent topics of angiotensin II type-1 receptor signaling in the vasculature,” Current Vascular Pharmacology, vol. 4, no. 1, pp. 67–78, 2006.
[38]  G. L. Christensen, S. Knudsen, M. Schneider et al., “AT1 receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor,” Molecular and Cellular Endocrinology, vol. 331, no. 1, pp. 49–56, 2011.
[39]  M. I. Rosón, S. L. D. Penna, G. Cao et al., “High-sodium diet promotes a profibrogenic reaction in normal rat kidneys: effects of Tempol administration,” Journal of Nephrology, vol. 24, no. 1, pp. 119–127, 2011.
[40]  D. S. A. Majid and L. Kopkan, “Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 9, pp. 946–952, 2007.
[41]  M.-G. Feng, S. A. W. Dukacz, and R. L. Kline, “Selective effect of tempol on renal medullary hemodynamics in spontaneously hypertensive rats,” American Journal of Physiology, Regulatory Integrative and Comparative Physiology, vol. 281, no. 5, pp. R1420–R1425, 2001.
[42]  J. L. Garvin and N. J. Hong, “Cellular stretch increases superoxide production in the thick ascending limb,” Hypertension, vol. 51, no. 2, pp. 488–493, 2008.
[43]  N. Tian, R. S. Moore, W. E. Phillips et al., “NADPH oxidase contributes to renal damage and dysfunction in Dahl salt-sensitive hypertension,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 295, no. 6, pp. R1858–R1865, 2008.
[44]  C. Martínez-Salgado, A. Rodríguez-Barbero, N. Eleno, and J. M. López-Novoa, “Gentamicin induces Jun-AP1 expression and JNK activation in renal glomeruli and cultured mesangial cells,” Life Sciences, vol. 77, no. 18, pp. 2285–2298, 2005.
[45]  H. Shimizu, S. Saito, Y. Higashiyama, F. Nishijima, and T. Niwa, “CREB, NF-κB, and NADPH oxidase coordinately upregulate indoxyl sulfate-induced angiotensinogen expression in proximal tubular cells,” American Journal of Physiology—Cell Physiology, vol. 304, no. 7, pp. C685–C692, 2013.
[46]  E. Y. Lai, Z. Luo, M. L. Onozato et al., “Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass,” American Journal of Physiology: Renal Physiology, vol. 303, no. 1, pp. F64–F74, 2012.
[47]  S. N. Heyman, S. Rosen, and C. Rosenberger, “Hypoxia-inducible factors and the prevention of acute organ injury,” Critical Care, vol. 15, no. 2, article 209, 2011.
[48]  J. Sch?del, B. Klanke, A. Weidemann et al., “HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury,” The American Journal of Pathology, vol. 174, no. 5, pp. 1663–1674, 2009.
[49]  Z. Lokmic, J. Musyoka, T. D. Hewitson, and I. A. Darby, “Hypoxia and hypoxia signalling in tissue repair and fibrosis,” International Review of Cell and Molecular Biology, vol. 296, pp. 139–185, 2012.
[50]  J. Nie and F.-F. Hou, “Role of reactive oxygen species in the renal fibrosis,” Chinese Medical Journal, vol. 125, no. 14, pp. 2598–2602, 2012.
[51]  S. W?rntges, H.-J. Gr?ne, G. Capasso, and F. Lang, “Cell volume regulatory mechanisms in progression of renal disease,” Journal of Nephrology, vol. 14, no. 5, pp. 319–326, 2001.
[52]  X. M. Meng, X. R. Huang, A. C. K. Chung et al., “Smad2 protects against TGF-β/Smad3-mediated renal fibrosis,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1477–1487, 2010.
[53]  M.-L. Brezniceanu, C.-C. Wei, S.-L. Zhang et al., “Transforming growth factor-beta 1 stimulates angiotensinogen gene expression in kidney proximal tubular cells,” Kidney International, vol. 69, no. 11, pp. 1977–1985, 2006.
[54]  X. C. Li and J. L. Zhuo, “Intracellular ANG II directly induces in vitro transcription of TGF-β1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors,” The American Journal of Physiology—Cell Physiology, vol. 294, no. 4, pp. C1034–C1045, 2008.
[55]  M. Alique, E. Civantos, E. Sanchez-Lopez, et al., “Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation,” Clinical Science, vol. 127, no. 1, pp. 19–31, 2014.
[56]  S. Thakur, L. Li, and S. Gupta, “NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts,” Life Sciences, vol. 107, no. 1-2, pp. 68–75, 2014.
[57]  M. Ruiz-Ortega, V. Esteban, M. Rupérez, et al., “Renal and vascular hypertension-induced inflammation: role of angiotensin II,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 2, pp. 159–166, 2006.
[58]  A. B. Sanz, M. D. Sanchez-Ni?o, A. M. Ramos, et al., “NF-κB in renal inflammation,” Journal of the American Society of Nephrology, vol. 21, no. 8, pp. 1254–1262, 2010.
[59]  M. I. Rosón, S. L. Della Penna, G. Cao et al., “Different protective actions of losartan and tempol on the renal inflammatory response to acute sodium overload,” Journal of Cellular Physiology, vol. 224, no. 1, pp. 41–48, 2010.
[60]  M. E. Reusser and D. A. McCarron, “Reducing hypertensive cardiovascular disease risk of African Americans with diet: focus on the facts,” Journal of Nutrition, vol. 136, no. 4, pp. 1099–1102, 2006.
[61]  F. J. He, N. D. Markandu, and G. A. MacGregor, “Modest salt reduction lowers blood pressure in isolated systolic hypertension and combined hypertension,” Hypertension, vol. 46, no. 1, pp. 66–70, 2005.
[62]  P. Hansell, W. J. Welch, R. C. Blantz, and F. Palm, “Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 40, no. 2, pp. 123–137, 2013.
[63]  S. Bernardi, W. C. Burns, B. Toffoli et al., “Angiotensin-converting enzyme 2 regulates renal atrial natriuretic peptide through angiotensin-(1-7),” Clinical Science, vol. 123, no. 1, pp. 29–37, 2012.
[64]  Y. Ogawa, M. Mukoyama, H. Yokoi et al., “Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1198–1209, 2012.
[65]  O. Arjamaa and M. Nikinmaa, “Hypoxia regulates the natriuretic peptide system,” International Journal of Physiology, Pathophysiology and Pharmacology, vol. 3, no. 3, pp. 191–201, 2011.
[66]  A. J. De Bold, H. B. Borenstein, A. T. Veress, and H. Sonnenberg, “A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats,” Life Sciences, vol. 28, no. 1, pp. 89–94, 1981.
[67]  M. Cantin and J. Genest, “The heart and the atrial natriuretic factor,” Endocrine Reviews, vol. 6, no. 2, pp. 107–127, 1985.
[68]  A. J. de Bold, “Atrial natriuretic factor: a hormone produced by the heart,” Science, vol. 230, no. 4727, pp. 767–770, 1985.
[69]  B. J. Ballermann and B. M. Brenner, “Role of atrial peptides in body fluid homeostasis,” Circulation Research, vol. 58, no. 5, pp. 619–630, 1986.
[70]  B. C. Berk, “Vascular smooth muscle growth: autocrine growth mechanisms,” Physiological Reviews, vol. 81, no. 3, pp. 999–1030, 2001.
[71]  N. Ishigaki, N. Yamamoto, H. Jin, K. Uchida, S. Terai, and I. Sakaida, “Continuos intravenous infusion of atrial natriuretic peptide (ANP) prevented liver fibrosis in rat,” Biochemical and Biophysical Research Communications, vol. 378, no. 3, pp. 354–359, 2009.
[72]  J. J. Lima, S. Mohapatra, H. Feng et al., “A polymorphism in the NPPA gene associates with asthma,” Clinical and Experimental Allergy, vol. 38, no. 7, pp. 1117–1123, 2008.
[73]  A. M. Vollmar, “The role of atrial natriuretic peptide in the immune system,” Peptides, vol. 26, no. 6, pp. 1086–1094, 2005.
[74]  J. E. Greenwald, P. Needleman, M. R. Wilkins, and G. F. Schreiner, “Renal synthesis of atriopeptin-like protein in physiology and pathophysiology,” American Journal of Physiology: Renal Fluid and Electrolyte Physiology, vol. 260, no. 4, pp. F602–F607, 1991.
[75]  D. Ritter, J. Chao, P. Needleman, E. Tetens, and J. E. Greenwald, “Localization, synthetic regulation, and biology of renal atriopeptin-like prohormone,” American Journal of Physiology. Renal Fluid and Electrolyte Physiology, vol. 263, no. 3, pp. F503–F509, 1992.
[76]  M. B. Anand-Srivastava and G. J. Trachte, “Atrial natriuretic factor receptors and signal transduction mechanisms,” Pharmacological Reviews, vol. 45, no. 4, pp. 455–497, 1993.
[77]  M. Kuhn, “Molecular physiology of natriuretic peptide signalling,” Basic Research in Cardiology, vol. 99, no. 2, pp. 76–82, 2004.
[78]  J. Brown, S. P. Salas, A. Singleton, J. M. Polak, and C. T. Dollery, “Autoradiographic localization of atrial natriuretic peptide receptor subtypes in rat kidney,” The American Journal of Physiology—Renal Fluid and Electrolyte Physiology, vol. 259, no. 1, pp. F26–F39, 1990.
[79]  J.-P. Valentin, L. A. Sechi, C. Qiu, M. Schambelan, and M. H. Humphreys, “Urodilatin binds to and activates renal receptors for atrial natriuretic peptide,” Hypertension, vol. 21, no. 4, pp. 432–438, 1993.
[80]  J. N. Wilcox, A. Augustine, D. V. Goeddel, and D. G. Lowe, “Differential regional expression of three natriuretic peptide receptor genes within primate tissues,” Molecular and Cellular Biology, vol. 11, no. 7, pp. 3454–3462, 1991.
[81]  L. R. Potter, S. Abbey-Hosch, and D. M. Dickey, “Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions,” Endocrine Reviews, vol. 27, no. 1, pp. 47–72, 2006.
[82]  M. Silberbach and C. T. Roberts Jr., “Natriuretic peptide signalling: molecular and cellular pathways to growth regulation,” Cellular Signalling, vol. 13, no. 4, pp. 221–231, 2001.
[83]  M. B. Anand-Srivastava, “Natriuretic peptide receptor-C signaling and regulation,” Peptides, vol. 26, no. 6, pp. 1044–1059, 2005.
[84]  T. Maack, M. Suzuki, F. A. Almeida et al., “Physiological role of silent receptors of atrial natriuretic facator,” Science, vol. 238, no. 4827, pp. 675–678, 1987.
[85]  J. G. Porter, A. Arfsten, F. Fuller, J. A. Miller, L. C. Gregory, and J. A. Lewicki, “Isolation and functional expression of the human atrial natriuretic peptide clearance receptor cDNA,” Biochemical and Biophysical Research Communications, vol. 171, no. 2, pp. 796–803, 1990.
[86]  M. Matsukawa, W. J. Grzesik, N. Takahashi et al., “The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7403–7408, 1999.
[87]  H. Koga, S. Hagiwara, J. Kusaka et al., “Human atrial natriuretic peptide attenuates renal ischemia-reperfusion injury,” Journal of Surgical Research, vol. 173, no. 2, pp. 348–353, 2012.
[88]  J. L. Finch, E. B. Suarez, K. Husain et al., “Effect of combining an ACE inhibitor and a VDR activator on glomerulosclerosis, proteinuria, and renal oxidative stress in uremic rats,” American Journal of Physiology—Renal Physiology, vol. 302, no. 1, pp. 141–149, 2012.
[89]  Y.-S. Chun, J.-Y. Hyun, Y.-G. Kwak, et al., “Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1,” Biochemical Journal, vol. 370, no. 1, pp. 149–157, 2003.
[90]  S. L. Della Penna, G. Cao, A. Carranza, et al., “Renal overexpression of atrial natriuretic peptide and hypoxia inducible factor-1 α as adaptive response to a high salt diet,” BioMed Research International, vol. 2014, Article ID 936978, 10 pages, 2014.
[91]  J. S. Beckman and J. P. Crow, “Pathological implications of nitric oxide, superoxide and peroxynitrite formation,” Biochemical Society Transactions, vol. 21, no. 2, pp. 330–334, 1993.
[92]  J. S. McLay, P. K. Chatterjee, A. G. Jardine, and G. M. Hawksworth, “Atrial natriuretic factor modulates nitric oxide production: an ANF-C receptor-mediated effect,” Journal of Hypertension, vol. 13, no. 6, pp. 625–630, 1995.
[93]  P. K. Chatterjee, G. M. Hawksworth, and J. S. McLay, “Cytokine-stimulated nitric oxide production in the human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism?” Experimental Nephrology, vol. 7, no. 5-6, pp. 438–448, 1999.
[94]  J. S. McLay, P. K. Chatterjee, S. K. Mistry et al., “Atrial natriuretic factor and angiotensin II stimulate nitric oxide release from human proximal tubular cells,” Clinical Science, vol. 89, no. 5, pp. 527–531, 1995.
[95]  M. á. Costa, R. Elesgaray, A. M. Balaszczuk, and C. Arranz, “Role of NPR-C natriuretic receptor in nitric oxide system activation induced by atrial natriuretic peptide,” Regulatory Peptides, vol. 135, no. 1-2, pp. 63–68, 2006.
[96]  R. Elesgaray, C. Caniffi, D. R. Ierace et al., “Signaling cascade that mediates endothelial nitric oxide synthase activation induced by atrial natriuretic peptide,” Regulatory Peptides, vol. 151, no. 1–3, pp. 130–134, 2008.
[97]  P. de Vito, S. Incerpi, J. Z. Pedersen, and P. Luly, “Atrial natriuretic peptide and oxidative stress,” Peptides, vol. 31, no. 7, pp. 1412–1419, 2010.
[98]  P. M. Baldini, P. de Vito, F. D'aquilio, et al., “Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth,” Molecular and Cellular Biochemistry, vol. 272, no. 1-2, pp. 19–28, 2005.
[99]  S. Saha, Y. Li, G. Lappas, and M. B. Anand-Srivastava, “Activation of natriuretic peptide receptor-C attenuates the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats: implication of Giα protein,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 2, pp. 336–344, 2008.
[100]  R. Fürst, C. Brueckl, W. M. Kuebler et al., “Atrial natriuretic peptide induces mitogen-activated protein kinase phosphatase-1 in human endothelial cells via Rac1 and NAD(P)H oxidase/Nox2-activation,” Circulation Research, vol. 96, no. 1, pp. 43–53, 2005.
[101]  P. M. Baldini, P. de Vito, A. Martino et al., “Differential sensitivity of human monocytes and macrophages to ANP: a role of intracellular pH on reactive oxygen species production through the phospholipase involvement,” Journal of Leukocyte Biology, vol. 73, no. 4, pp. 502–510, 2003.
[102]  A. K. Kiemer, R. Fürst, and A. M. Vollmar, “Vasoprotective actions of the atrial natriuretic peptide,” Current Medicinal Chemistry: Cardiovascular and Hematological Agents, vol. 3, no. 1, pp. 11–21, 2005.
[103]  A. Calderone, “Natriuretic peptides and the management of heart failure,” Minerva Endocrinologica, vol. 29, no. 3, pp. 113–127, 2004.
[104]  A. K. Kiemer, N. C. Weber, and A. M. Vollmar, “Induction of IκB: atrial natriuretic peptide as a regulator of the NF-κB pathway,” Biochemical and Biophysical Research Communications, vol. 295, no. 5, pp. 1068–1076, 2002.
[105]  A. K. Kiemer and A. M. Vollmar, “Autocrine regulation of inducible nitric-oxide synthase in macrophages by atrial natriuretic peptide,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13444–13451, 1998.
[106]  A. K. Kiemer, M. D. Lehner, T. Hartung, and A. M. Vollmar, “Inhibition of cyclooxygenase-2 by natriuretic peptides,” Endocrinology, vol. 143, no. 3, pp. 846–852, 2002.
[107]  A. K. Kiemer, N. C. Weber, R. Fürst, N. Bildner, S. Kulhanek-Heinze, and A. M. Vollmar, “Inhibition of p38 MAPK activation via induction of MKP-1: atrial natriuretic peptide reduces TNF-α-induced actin polymerization and endothelial permeability,” Circulation Research, vol. 90, no. 8, pp. 874–881, 2002.
[108]  D. J. Campbell, A. C. Lawrence, A. Towrie, A. Kladis, and A. J. Valentijn, “Differential regulation of angiotensin peptide levels in plasma and kidney of the rat,” Hypertension, vol. 18, no. 6, pp. 763–773, 1991.
[109]  M. Tulafu, C. Mitaka, M. K. Hnin Si et al., “Atrial natriuretic peptide attenuates kidney-lung crosstalk in kidney injury,” The Journal of Surgical Research, vol. 186, no. 1, pp. 217–225, 2014.
[110]  C.-S. Lo, C.-H. Chen, T.-J. Hsieh, K.-D. Lin, P. I.-J. Hsiao, and S.-J. Shin, “Local action of endogenous renal tubular atrial natriuretic peptide,” Journal of Cellular Physiology, vol. 219, no. 3, pp. 776–786, 2009.
[111]  S. Das, R. Periyasamy, and K. N. Pandey, “Activation of IKK/NF-B provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice,” Physiological Genomics, vol. 44, no. 7, pp. 430–442, 2012.
[112]  D. C. Irwin, M. C. T. Van Patot, A. Tucker, and R. Bowen, “Direct ANP inhibition of hypoxia-induced inflammatory pathways in pulmonary microvascular and macrovascular endothelial monolayers,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 288, no. 5, pp. L849–L859, 2005.
[113]  N. Li, L. Chen, F. Yi, M. Xia, and P.-L. Li, “Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1α in the renal medulla,” Circulation Research, vol. 102, no. 9, pp. 1101–1108, 2008.
[114]  N. D. Vaziri and B. Rodríguez-Iturbe, “Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension,” Nature Clinical Practice Nephrology, vol. 2, no. 10, pp. 582–593, 2006.
[115]  B. Rodriguez-Iturbe, L. Sepassi, Y. Quiroz, Z. Ni, and N. D. Vaziri, “Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence,” Journal of Applied Physiology, vol. 102, no. 1, pp. 255–260, 2007.
[116]  M.-Z. Zhang, B. Yao, S. Yang et al., “Intrarenal dopamine inhibits progression of diabetic nephropathy,” Diabetes, vol. 61, no. 10, pp. 2575–2584, 2012.
[117]  M. H. Humphreys, “Mechanisms and management of nephrotic edema,” Kidney International, vol. 45, no. 1, pp. 266–281, 1994.
[118]  R. M. Carey, “The intrarenal renin-angiotensin and dopaminergic systems: control of renal sodium excretion and blood pressure,” Hypertension, vol. 61, no. 3, pp. 673–680, 2013.
[119]  J.-M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacological Reviews, vol. 63, no. 1, pp. 182–217, 2011.
[120]  T. Hussain and M. F. Lokhandwala, “Renal dopamine receptors and hypertension,” Experimental Biology and Medicine, vol. 228, no. 2, pp. 134–142, 2003.
[121]  C. Zeng, H. Sanada, H. Watanabe, G. M. Eisner, R. A. Felder, and P. A. Jose, “Functional genomics of the dopaminergic system in hypertension,” Physiological Genomics, vol. 19, no. 3, pp. 233–246, 2005.
[122]  M. D. Denton, G. M. Chertow, and H. R. Brady, “'Renal-dose' dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials,” Kidney International, vol. 50, no. 1, pp. 4–14, 1996.
[123]  P. K. Vohra, L. H. Hoeppner, G. Sagar, et al., “Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 302, no. 2, pp. 185–192, 2012.
[124]  G. V. Desir, “Role of renalase in the regulation of blood pressure and the renal dopamine system,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 1, pp. 31–36, 2011.
[125]  G. Li, J. Xu, P. Wang et al., “Catecholamines regulate the activity, secretion, and synthesis of renalase,” Circulation, vol. 117, no. 10, pp. 1277–1282, 2008.
[126]  S. Yang, B. Yao, Y. Zhou, H. Yin, M.-Z. Zhang, and R. C. Harris, “Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury,” The American Journal of Physiology—Renal Physiology, vol. 302, no. 6, pp. F742–F749, 2012.
[127]  E. Silva, P. Gomes, and P. Soares-da-Silva, “Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent l-DOPA transport in renal OK cells,” Life Sciences, vol. 79, no. 8, pp. 723–729, 2006.
[128]  P.-Y. Yu, L. D. Asico, G. M. Eisner, and P. A. Jose, “Differential regulation of renal phospholipase C isoforms by catecholamines,” Journal of Clinical Investigation, vol. 95, no. 1, pp. 304–308, 1995.
[129]  B. R. Souza, M. A. Romano-Silva, and V. Tropepe, “Dopamine D2 receptor activity modulates Akt signaling and alters GABaergic neuron development and motor behavior in Zebrafish larvae,” The Journal of Neuroscience, vol. 31, no. 14, pp. 5512–5525, 2011.
[130]  A. Pollack, “Coactivation of D1 and D2 dopamine receptors: in marriage, a case of his, hers, and theirs,” Science's STKE: Signal Transduction Knowledge Environment, vol. 2004, no. 255, p. pe50, 2004.
[131]  K. Yasunari, M. Kohno, H. Kano, M. Minami, and J. Yoshikawa, “Dopamine as a novel antioxidative agent for rat vascular smooth muscle cells through dopamine D1-like receptors,” Circulation, vol. 101, no. 19, pp. 2302–2308, 2000.
[132]  G. Grima, B. Benz, V. Parpura, M. Cuénod, and K. Q. Do, “Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia,” Schizophrenia Research, vol. 62, no. 3, pp. 213–224, 2003.
[133]  M. Cosentino, E. Rasini, C. Colombo, et al., “Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect,” Free Radical Biology & Medicine, vol. 36, no. 10, pp. 1233–1240, 2004.
[134]  P. Yu, W. Han, V. A. M. Villar et al., “Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A-protein kinase C cross talk,” Free Radical Biology and Medicine, vol. 50, no. 7, pp. 832–840, 2011.
[135]  Z. Yang, L. D. Asico, P. Yu et al., “D5 dopamine receptor regulation of phospholipase D,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 288, no. 1, pp. H55–H61, 2005.
[136]  Z. Yang, L. D. Asico, P. Yu, et al., “D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 290, no. 1, pp. R96–R104, 2006.
[137]  Q. Lu, L. D. Asico, J. E. Jones, et al., “Impaired heme oxigenase activity, increased reactive oxygen species, and high blood pressure in D5 dopamine receptor deficient mice,” The Journal of American Society of Nephrology, vol. 16, p. 163A, 2005.
[138]  L. E. George, M. F. Lokhandwala, and M. Asghar, “Novel role of NF-B-p65 in antioxidant homeostasis in human kidney-2 cells,” American Journal of Physiology—Renal Physiology, vol. 302, no. 11, pp. F1440–F1446, 2012.
[139]  L. George, M. F. Lokhandwala, and M. Asghar, “Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats,” American Journal of Physiology—Renal Physiology, vol. 297, no. 5, pp. F1174–F1180, 2009.
[140]  Q. Lu, Y. Yang, V. A. Villar et al., “D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1,” Hypertension Research, vol. 36, no. 8, pp. 684–690, 2013.
[141]  D. Nagakubo, T. Taira, H. Kitaura et al., “DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras,” Biochemical and Biophysical Research Communications, vol. 231, no. 2, pp. 509–513, 1997.
[142]  E. Andres-Mateos, C. Perier, L. Zhang et al., “DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14807–14812, 2007.
[143]  F. Liu, J. L. Nguyen, J. D. Hulleman, L. Li, and J.-C. Rochet, “Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson's disease,” Journal of Neurochemistry, vol. 105, no. 6, pp. 2435–2453, 2008.
[144]  W. Zhou and C. R. Freed, “DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T α-synuclein toxicity,” Journal of Biological Chemistry, vol. 280, no. 52, pp. 43150–43158, 2005.
[145]  N. Zhong and J. Xu, “Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1α: regulation by SUMOylation and oxidation,” Human Molecular Genetics, vol. 17, no. 21, pp. 3357–3367, 2008.
[146]  Z. Yang, L. D. Asico, P. Yu et al., “D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 290, no. 1, pp. R96–R104, 2006.
[147]  C. S. Wilcox, “Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?” American Journal of Physiology, vol. 289, no. 4, pp. R913–R935, 2005.
[148]  I. Armando, X. Wang, V. A. M. Villar et al., “Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice,” Hypertension, vol. 49, no. 3, pp. 672–678, 2007.
[149]  A. P. Zou, H. Billington, N. Su, and A. W. Cowley Jr., “Expression and actions of heme oxygenase in the renal medulla of rats,” Hypertension, vol. 35, no. 1, pp. 342–347, 2000.
[150]  J.-L. Da Silva, B. A. Zand, H. E. Sabaawy, E. Lianos, and N. G. Abraham, “Heme oxygenase isoform-specific expression and distribution in the rat kidney,” Kidney International, vol. 59, no. 4, pp. 1448–1457, 2001.
[151]  Y. Yang, Y. Zhang, S. Cuevas et al., “Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase,” Free Radical Biology and Medicine, vol. 53, no. 3, pp. 437–446, 2012.
[152]  R. C. Harris, “Abnormalities in renal dopamine signaling and hypertension: the role of GRK4,” Current Opinion in Nephrology and Hypertension, vol. 21, no. 1, pp. 61–65, 2012.
[153]  T. A. Kohout and R. J. Lefkowitz, “Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization,” Molecular Pharmacology, vol. 63, no. 1, pp. 9–18, 2003.
[154]  R. Z. Fardoun, M. Asghar, and M. Lokhandwala, “Role of nuclear factor kappa B (NF-κB) in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague-Dawley rats,” Free Radical Biology & Medicine, vol. 42, no. 6, pp. 756–764, 2007.
[155]  A. A. Banday, F. R. Fazili, and M. F. Lokhandwala, “Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-κB and protein kinase C,” Journal of the American Society of Nephrology, vol. 18, no. 5, pp. 1446–1457, 2007.
[156]  M. Asghar, A. A. Banday, R. Z. Fardoun, and M. F. Lokhandwala, “Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2,” Free Radical Biology and Medicine, vol. 40, no. 1, pp. 13–20, 2006.
[157]  M.-L. P. Gross, A. Koch, B. Mühlbauer et al., “Renoprotective effect of a dopamine D3 receptor antagonist in experimental type II diabetes,” Laboratory Investigation, vol. 86, no. 3, pp. 262–274, 2006.
[158]  X. Jiang, P. Konkalmatt, Y. Yang, et al., “Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells,” Hypertension, vol. 63, no. 3, pp. e74–e80, 2014.
[159]  M. Martin-Grez, J. P. Briggs, G. Schubert, and J. Schnermann, “Dopamine receptor antagonists inhibit the natriuretic response to atrial natriuretic factor (ANF),” Life Sciences, vol. 36, no. 22, pp. 2171–2176, 1985.
[160]  A. Pettersson, J. Hedner, and T. Hedner, “The diuretic effect of atrial natriuretic peptide (ANP) is dependent on dopaminergic activation,” Acta Physiologica Scandinavica, vol. 126, no. 4, pp. 619–621, 1986.
[161]  R. L. Webb, R. Della Puca, J. Manniello, R. D. Robson, M. B. Zimmerman, and R. D. Ghai, “Dopaminergic mediation of the diuretic and natriuretic effects of ANF in the rat,” Life Sciences, vol. 38, no. 25, pp. 2319–2327, 1986.
[162]  A. Israel, M. Torres, and Y. Barbella, “Evidence for a dopaminergic mechanism for the diuretic and natriuretic action of centrally administered atrial natriuretic factor,” Cellular and Molecular Neurobiology, vol. 9, no. 3, pp. 369–378, 1989.
[163]  T. Katoh, S. Sophasan, and K. Kurokawa, “Permissive role of dopamine in renal action of ANP in volume-expanded rats,” American Journal of Physiology: Renal Fluid and Electrolyte Physiology, vol. 257, no. 2, pp. 300–309, 1989.
[164]  S. S. Hedge, C.-J. Chen, and M. F. Lokhandwala, “Involvement of endogenous dopamine and DA-1 receptors in the renal effects of atrial natriuretic factor in rats,” Clinical and Experimental Hypertension A: Theory and Practice, vol. 13, no. 3, pp. 357–369, 1991.
[165]  A. C. Aperia, “Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism,” Annual Review of Physiology, vol. 62, pp. 621–647, 2000.
[166]  J. Winaver, J. C. Burnett, G. M. Tyce, and T. P. Dousa, “ANP inhibits Na+-H+ antiport in proximal tubular brush border membrane: role of dopamine,” Kidney International, vol. 38, no. 6, pp. 1133–1140, 1990.
[167]  B. E. Fernández, A. H. Correa, and M. R. Choi, “Atrial natriuretic factor stimulates renal dopamine uptake mediated by natriuretic peptide-type A receptor,” Regulatory Peptides, vol. 124, no. 1–3, pp. 137–144, 2005.
[168]  A. H. Correa, M. R. Choi, M. Gironacci, M. S. Valera, and B. E. Fernández, “Signaling pathways involved in atrial natriuretic factor and dopamine regulation of renal Na+, K+-ATPase activity,” Regulatory Peptides, vol. 138, no. 1, pp. 26–31, 2007.
[169]  C.-J. Chen, S. Apparsundaram, and M. F. Lokhandwala, “Intrarenally produced angiotensin II opposes the natriuretic action of the dopamine-1 receptor agonist fenoldopam in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 256, no. 2, pp. 486–491, 1991.
[170]  H.-F. Cheng, B. N. Becker, and R. C. Harris, “Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule,” The Journal of Clinical Investigation, vol. 97, no. 12, pp. 2745–2752, 1996.
[171]  M. R. Choi, A. H. Correa, V. del Valle Turco, F. A. Garcia, and B. E. Fernández, “Angiotensin II regulates extraneuronal dopamine uptake in the kidney,” Nephron—Physiology, vol. 104, no. 4, pp. 136–143, 2006.
[172]  M. R. Choi, C. Medici, M. M. Gironacci, A. H. Correa, and B. E. Fernández, “Angiotensin II regulation of renal dopamine uptake and Na+,K+-ATPase activity,” Nephron Physiology, vol. 111, no. 4, pp. p55–p60, 2009.
[173]  M. R. Choi, B. M. Lee, C. Medici, A. H. Correa, and B. E. Fernández, “Effects of angiotensin II on renal dopamine metabolism: synthesis, release, catabolism and turnover,” Nephron Physiology, vol. 115, no. 1, pp. p1–P7, 2010.
[174]  S. H. Padia, B. A. Kemp, N. L. Howell, S. R. Keller, J. J. Gildea, and R. M. Carey, “Mechanisms of dopamine D1 and angiotensin type 2 receptor interaction in natriuresis,” Hypertension, vol. 59, no. 2, pp. 437–445, 2012.
[175]  L. J. Salomone, N. L. Howell, H. E. McGrath et al., “Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism,” Hypertension, vol. 49, no. 1, pp. 155–161, 2007.
[176]  L. D. Asico, C. Ladines, S. Fuchs et al., “Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension,” The Journal of Clinical Investigation, vol. 102, no. 3, pp. 493–498, 1998.
[177]  F. Khan, Z. ?picarová, S. Zelenin, U. Holtb?ck, L. Scott, and A. Aperia, “Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells,” American Journal of Physiology: Renal Physiology, vol. 295, no. 4, pp. F1110–F1116, 2008.
[178]  C. Zeng, Z. Wang, U. Hopfer et al., “Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells,” Hypertension, vol. 46, no. 4, pp. 799–805, 2005.
[179]  C. Zeng, Y. Liu, Z. Wang et al., “Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells,” Circulation Research, vol. 99, no. 5, pp. 494–500, 2006.
[180]  J. J. Gildea, X. Wang, P. A. Jose, and R. A. Felder, “Differential D1 and D5 receptor regulation and degradation of the angiotensin type 1 receptor,” Hypertension, vol. 51, no. 2, pp. 360–366, 2008.
[181]  H. Li, I. Armando, P. Yu, et al., “Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells,” The Journal of Clinical Investigation, vol. 118, no. 6, pp. 2180–2189, 2008.
[182]  C. Zeng, Z. Yang, Z. Wang et al., “Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells,” Hypertension, vol. 45, no. 4, pp. 804–810, 2005.
[183]  J. J. Gildea, “Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 1, pp. 28–32, 2009.
[184]  G. Chugh, M. Lokhandwala, and M. Asghar, “High blood pressure in aged Fischer 344 X Brown Norway F1 rats is associated with increased oxidative stress, NFkB activation and exaggerated renal AT1R response to Ang II,” The FASEB Journal, vol. 23, p. 1016.8, 2009.
[185]  M. Z. Zhang, B. Yao, S. Wang et al., “Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2845–2854, 2011.
[186]  S. Yang, B. Yao, Y. Zhou, H. Yin, M.-Z. Zhang, and R. C. Harris, “Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury,” American Journal of Physiology: Renal Physiology, vol. 302, no. 6, pp. F742–F749, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413