全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model

DOI: 10.1155/2014/239495

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5–1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both. 1. Introduction Equine Protozoal Myeloencephalitis (EPM) represents the most commonly diagnosed neurologic disease of horses within the United States [1–3]. Horses are aberrant hosts and are commonly infected by ingestion of the Sarcocystis neurona sporocyst, through contamination of feedstuffs. The majority of horses exposed to this parasite generate a protective immune response and do not develop clinical signs. However, for the small percentage of horses that develop EPM, the clinical signs are classically those associated with asymmetric neurologic deficits, including gait abnormalities, ataxia, weakness, and focal muscle atrophy [3–5]. Annual losses in the United States are estimated to be $55.4 to $110.8 million [2]. In order to develop more efficacious treatments, vaccines, and diagnostic assays, it is important to first determine if there is an immune signature that dictates whether a horse will develop a protective response or neurologic disease. While protection has been linked to CD4 and CD8 cell-mediated response and interferon-gamma (IFN) production [6–9], the specific pathway(s) of immune cell responses associated with development of disease in the equine are still poorly characterized. Interestingly, a number of studies have reported an immune profile of decreased CD4 expression, surface antigen 1- (SAG1-) induced cell proliferation, PMA/I stimulated cell proliferation, and IFN in EPM affected horses [10–13]. It has

References

[1]  R. J. MacKay, D. E. Granstrom, W. J. Saville, and S. M. Reed, “Equine protozoal myeloencephalitis,” The Veterinary Clinics of North America. Equine practice, vol. 16, no. 3, pp. 405–425, 2000.
[2]  J. P. Dubey, “Migration and development of Sarcocystis neurona in tissues of interferon gamma knockout mice fed sporocysts from a naturally infected opossum,” Veterinary Parasitology, vol. 95, no. 2–4, pp. 341–351, 2001.
[3]  NAHMS, Equine Protozoal Myeloencephalitis (EPM) in the U.S., CEAH—USDA APHIS, Fort Collins, Colo, USA, 2001.
[4]  C. K. Fenger, D. E. Granstrom, A. A. Gajadhar, et al., “Experimental induction of equine protozoal myeloencephalitis in horses using Sarcocystis sp. sporocysts from the opossum (Didelphis virginiana),” Veterinary Parasitology, vol. 68, no. 3, pp. 199–213, 1997.
[5]  C. K. Fenger, D. E. Granstrom, J. L. Langemeier, and S. Stamper, “Epizootic of equine protozoal myeloencephalitis on a farm,” Journal of the American Veterinary Medical Association, vol. 210, no. 7, pp. 923–927, 1997.
[6]  S. G. Witonsky, R. M. Gogal Jr., R. B. Duncan Jr., and D. S. Lindsay, “Immunopathologic effects associated with Sarcocystis neurona-infected interferon-gamma knockout mice,” Journal of Parasitology, vol. 89, no. 5, pp. 932–940, 2003.
[7]  S. G. Witonsky, R. M. Gogal Jr., R. B. Duncan, and D. S. Lindsay, “Protective immune response to experimental infection with Sarcocystis neurona in C57BL/6 mice,” The Journal of Parasitology, vol. 89, no. 5, pp. 924–931, 2003.
[8]  D. C. Sellon, D. P. Knowles, E. C. Greiner et al., “Depletion of natural killer cells does not result in neurologic disease due to Sarcocystis neurona in mice with severe combined immunodeficiency,” Journal of Parasitology, vol. 90, no. 4, pp. 782–788, 2004.
[9]  S. G. Witonsky, R. M. Gogal Jr., R. B. Duncan Jr., H. Norton, D. Ward, and D. S. Lindsay, “Prevention of meningo/encephalomyelitis due to Sarcocystis neurona infection in mice is mediated by CD8 cells,” International Journal for Parasitology, vol. 35, no. 1, pp. 113–123, 2005.
[10]  S. J. Tornquist, L. J. Boeder, D. E. Mattson, C. K. Cebra, R. J. Bildfell, and A. N. Hamir, “Lymphocyte responses and immunophenotypes in horses with Sarcocystis neurona infection,” Equine Veterinary Journal, vol. 33, no. 7, pp. 726–729, 2001.
[11]  J. A. Spencer, S. E. Ellison, A. J. Guarino, and B. L. Blagburn, “Cell-mediated immune responses in horses with equine protozoal myeloencephalitis,” Journal of Parasitology, vol. 90, no. 2, pp. 428–430, 2004.
[12]  J. Yang, S. Ellison, R. Gogal et al., “Immune response to Sarcocystis neurona infection in naturally infected horses with equine protozoal myeloencephalitis,” Veterinary Parasitology, vol. 138, no. 3-4, pp. 200–210, 2006.
[13]  S. G. Witonsky, S. Ellison, J. Yang, et al., “Horses experimentally infected with Sarcocystis neurona develop altered immune responses in vitro,” Journal of Parasitology, vol. 94, no. 5, pp. 1047–1054, 2008.
[14]  W. J. Saville, S. M. Reed, D. E. Granstrom, et al., “Seroprevalence of antibodies to Sarcocystis neurona in horses residing in Ohio,” Journal of the American Veterinary Medical Association, vol. 210, no. 4, pp. 519–524, 1997.
[15]  W. J. Saville, S. M. Reed, P. S. Morley et al., “Analysis of risk factors for the development of equine protozoal myeloencephalitis in horses,” Journal of the American Veterinary Medical Association, vol. 217, no. 8, pp. 1174–1180, 2000.
[16]  W. J. Saville, R. W. Stich, S. M. Reed, et al., “Utilization of stress in the development of an equine model for equine protozoal myeloencephalitis,” Veterinary Parasitology, vol. 95, no. 2–4, pp. 211–222, 2001.
[17]  P. S. Morley, J. L. Traub-Dargatz, K. M. Benedict, W. J. A. Saville, L. D. Voelker, and B. A. Wagner, “Risk factors for owner-reported occurrence of equine protozoal myeloencephalitis in the US equine population,” Journal of Veterinary Internal Medicine, vol. 22, no. 3, pp. 616–629, 2008.
[18]  S. Ellison, T. Kennedy, and K. Brown, “Early signs of equine protozoal myeloencephalitis,” International Journal of Applied Research in Veterinary Medicine, vol. 1, pp. 272–278, 2003.
[19]  S. Ellison, T. Kennedy, and K. Brown, “Development of an ELISA to detect antibodies to rSAG1 in the horse,” Journal of Applied Research in Veterinary Medicine, vol. 1, no. 4, pp. 318–327, 2003.
[20]  S. Ellison, E. Greiner, K. Brown, and T. Kennedy, “Experimental infection of horses with culture-derived Sarcocystis neurona merozoites as a model for equine protozoal myeloencephalitis,” International Journal of Applied Research in Veterinary Medicine, vol. 2, pp. 79–89, 2004.
[21]  I. G. Mayhew, A. deLahunta, R. H. Whitlock, L. Krook, and J. B. Tasker, “Spinal cord disease in the horse,” Cornell Veterinary, vol. 68, supplement 6, pp. 1–207, 1978.
[22]  S. Witonsky, R. M. Gogal Jr., V. Buechner-Maxwell, and S. A. Ahmed, “Immunologic analysis of blood samples obtained from horses and stored for twenty-four hours,” American Journal of Veterinary Research, vol. 64, no. 8, pp. 1003–1009, 2003.
[23]  A. B. Lyons, “Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution,” Journal of Immunological Methods, vol. 243, no. 1-2, pp. 147–154, 2000.
[24]  D. S. Lindsay and J. P. Dubey, “Direct agglutination test for the detection of antibodies to Sarcocystis neurona in experimentally infected animals,” Veterinary Parasitology, vol. 95, no. 2–4, pp. 179–186, 2001.
[25]  P. Keller, F. Schaumburg, S. F. Fischer, G. H?cker, U. Gro?, and C. G. K. Lüder, “Direct inhibition of cytochrome c-induced caspase activation in vitro by Toxoplasma gondii reveals novel mechanisms of interference with host cell apoptosis,” FEMS Microbiology Letters, vol. 258, no. 2, pp. 312–319, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413