全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Potential Utility of Pharmacogenetic Testing in Psychiatry

DOI: 10.1155/2014/730956

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last decade, pharmacogenetics has become increasingly significant to clinical practice. Psychiatric patients, in particular, may benefit from pharmacogenetic testing as many of the psychotropic medications prescribed in practice lead to varied response rates and a wide range of side effects. The use of pharmacogenetic testing can help tailor psychotropic treatment and inform personalized treatment plans with the highest likelihood of success. Recently, many studies have been published demonstrating improved patient outcomes and decreased healthcare costs for psychiatric patients who utilize genetic testing. This review will describe evidence supporting the clinical utility of genetic testing in psychiatry, present several case studies to demonstrate use in everyday practice, and explore current patient and clinician opinions of genetic testing. 1. Introduction Mental illnesses are extremely prevalent and debilitating. Depression alone is the leading cause of disability worldwide, leading to a significant patient/economic burden, affecting at least 350 million people [1]. Approximately 14% of the global disease burden can be attributed to neuropsychiatric disorders [2]. Twenty-five percent of adults in the US currently suffer from a mental illness, and at least half will develop one or more in their lifetime [3]. Moreover, 50% of patients suffering from depression do not respond to first-line therapies or experience severe adverse reactions to medications [4]. There is significant interindividual variation to psychotropic treatment response, leading psychiatrists to adopt a trial and error approach to treatment [5]. Genetic variability can account for much of this inconsistency in medication response [6]. Knowledge of a patient’s genetic background can help clinicians provide a personalized medicine strategy by predicting both drug response and risk for adverse events [7]. Clinicians can utilize this information to compensate for a gene defect (pharmacodynamic genetic variations) or to adjust medication dosage to accommodate the rate at which the patient metabolizes different medications (pharmacokinetic genetic variations). Much of the utility of pharmacogenetic testing has been shown in clinical settings other than psychiatry. Many of these tests identify mutations relating to altered expression and functions of genes associated with drug disposition and response and have been useful in clinical practice [8]. Within psychiatry, several studies have found genetic variations associated with altered treatment response/efficacy [9, 10] and

References

[1]  World Health Organization, “Depression,” Fact Sheet No. 369, World Health Organization, 2012.
[2]  M. Prince, V. Patel, S. Saxena, et al., “No health without mental health,” The Lancet, vol. 370, no. 9590, pp. 859–877, 2007.
[3]  S. B. Cohen, “The concentration of health care expenditures and related expenses for costly medical conditions,” Tech. Rep. 455, Medical Expenditure Panel Survey, 2012.
[4]  D. Warden, A. J. Rush, M. H. Trivedi, M. Fava, and S. R. Wisniewski, “The STAR*D project results: a comprehensive review of findings,” Current Psychiatry Reports, vol. 9, no. 6, pp. 449–459, 2007.
[5]  D. A. Mrazek, “Psychiatric pharmacogenomic testing in clinical practice,” Dialogues in Clinical NeuroSciences, vol. 12, no. 1, pp. 69–76, 2010.
[6]  W. E. Evans and H. L. McLeod, “Pharmacogenomics—drug disposition, drug targets, and side effects,” The New England Journal of Medicine, vol. 348, no. 6, pp. 538–549, 2003.
[7]  S. Vegter, C. Boersma, M. Rozenbaum, B. Wilffert, G. Navis, and M. J. Postma, “Pharmacoeconomic evaluations of pharmacogenetic and genomic screening programmes: a systematic review on content and adherence to guidelines,” PharmacoEconomics, vol. 26, no. 7, pp. 569–587, 2008.
[8]  T. Dervieux, B. Meshkin, and B. Neri, “Pharmacogenetic testing: proofs of principle and pharmacoeconomic implications,” Mutation Research, vol. 573, no. 1-2, pp. 180–194, 2005.
[9]  H. A. Garriock, J. B. Kraft, S. I. Shyn, et al., “A genomewide association study of citalopram response in major depressive disorder,” Biological Psychiatry, vol. 67, no. 2, pp. 133–138, 2010.
[10]  C. A. Altar, J. Hornberger, A. Shewade, V. Cruz, J. Garrison, and D. Mrazek, “Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy,” International Review of Psychiatry, vol. 25, no. 5, pp. 509–533, 2013.
[11]  M. Kato and A. Serretti, “Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder,” Molecular Psychiatry, vol. 15, no. 5, pp. 473–500, 2010.
[12]  B. T. Baune, C. Hohoff, K. Berger et al., “Association of the COMT val158met variant with antidepressant treatment response in major depression,” Neuropsychopharmacology, vol. 33, no. 4, pp. 924–932, 2008.
[13]  C. J. Kobylecki, K. D. Jakobsen, T. Hansen, I. V. Jakobsen, H. B. Rasmussen, and T. Werge, “CYP2D6 genotype predicts antipsychotic side effects in schizophrenia inpatients: a retrospective matched case-control study,” Neuropsychobiology, vol. 59, no. 4, pp. 222–226, 2009.
[14]  J.-P. Zhang, T. Lencz, and A. K. Malhotra, “D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis,” The American Journal of Psychiatry, vol. 167, no. 7, pp. 763–772, 2010.
[15]  S. Porcelli, C. Fabbri, and A. Serretti, “Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy,” European Neuropsychopharmacology, vol. 22, no. 4, pp. 239–258, 2012.
[16]  U. A. Meyer, “Pharmacogenetics and adverse drug reactions,” The Lancet, vol. 356, no. 9242, pp. 1667–1671, 2000.
[17]  L. Herbild, S. E. Andersen, T. Werge, H. B. Rasmussen, and G. Jürgens, “Does pharmacogenetic testing for CYP450 2D6 and 2C19 among patients with diagnoses within the schizophrenic spectrum reduce treatment costs?” Basic and Clinical Pharmacology and Toxicology, vol. 113, no. 4, pp. 266–272, 2013.
[18]  W. H. Chou, F.-X. Yan, J. de Leon, et al., “Extension of a pilot study: Impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness,” Journal of Clinical Psychopharmacology, vol. 20, no. 2, pp. 246–251, 2000.
[19]  G. Ruano, B. L. Szarek, D. Villagra et al., “Length of psychiatric hospitalization is correlated with CYP2D6 functional status in inpatients with major depressive disorder,” Biomarkers in Medicine, vol. 7, no. 3, pp. 429–439, 2013.
[20]  J. Winner, J. D. Allen, C. A. Altar, and A. Spahic-Mihajlovic, “Psychiatric pharmacogenomics predicts health resource utilization of outpatients with anxiety and depression,” Translational psychiatry, vol. 3, article e242, 2013.
[21]  J. Fagerness, E. Fonesca, G. P. Hess, et al., “Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings,” The Amercian Journal of Managed Care, vol. 20, no. 5, pp. e146–e156, 2014.
[22]  D. L. Murphy and P. R. Moya, “Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional G × G and G × e differences in health and disease,” Current Opinion in Pharmacology, vol. 11, no. 1, pp. 3–10, 2011.
[23]  A. Farah, “The role of L-methylfolate in depressive disorders,” CNS Spectrums, vol. 14, supplement 2, no. 1, pp. 2–7, 2009.
[24]  G. I. Papakostas, R. C. Shelton, J. M. Zajecka et al., “L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind,,parallel-sequential trials,” The American Journal of Psychiatry, vol. 169, no. 12, pp. 1267–1274, 2012.
[25]  R. L. Wade, S. L. Kindermann, Q. Hou, and M. E. Thase, “Comparative assessment of adherence measures and resource use in SSRI/SNRI-treated patients with depression using second-generation antipsychotics or l-methylfolate as adjunctive therapy,” Journal of Managed Care Pharmacy, vol. 20, no. 1, pp. 76–85, 2014.
[26]  R. Patel, “AANP poster presentation explores impact of baseline levels of BMI, hsCRP, and MTHFR on effect of adjunctive L-methylfolate 15?mg in depressed patients,” 2013.
[27]  J. G. Hoop, M. I. Lapid, R. M. Paulson, and L. W. Roberts, “Clinical and ethical considerations in pharmacogenetic testing: views of physicians in 3 “early adopting” departments of psychiatry,” The Journal of Clinical Psychiatry, vol. 71, no. 6, pp. 745–753, 2010.
[28]  T. B. Gibson, Y. Jing, G. S. Carls et al., “Cost burden of treatment resistance in patients with depression,” The American Journal of Managed Care, vol. 16, no. 5, pp. 370–377, 2010.
[29]  N. Olchanski, M. McInnis Myers, M. Halseth et al., “The economic burden of treatment-resistant depression,” Clinical Therapeutics, vol. 35, no. 4, pp. 512–522, 2013.
[30]  J. S. McCombs, M. B. Nichol, G. L. Stimmel, D. A. Sclar, C. M. Beasley Jr., and L. S. Gross, “The cost of antidepressant drug therapy failure: a study of antidepressant use patterns in a Medicaid population,” The Journal of Clinical Psychiatry, vol. 51, no. 6, pp. 60–71, 1990.
[31]  B. L. Svarstad, T. I. Shireman, and J. K. Sweeney, “Using drug claims data to assess the relationship of medication adherence with hospitalization and costs,” Psychiatric Services, vol. 52, no. 6, pp. 805–811, 2001.
[32]  G. M. Murphy Jr., S. B. Hollander, H. E. Rodrigues, C. Kremer, and A. F. Schatzberg, “Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression,” Archives of General Psychiatry, vol. 61, no. 11, pp. 1163–1169, 2004.
[33]  T. Lencz, D. G. Robinson, B. Napolitano, et al., “DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia,” Pharmacogenetics and Genomics, vol. 20, no. 9, pp. 569–572, 2010.
[34]  S. Bhat, D. T. Dao, C. E. Terrillion, et al., “CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease,” Progress in Neurobiology, vol. 99, no. 1, pp. 1–14, 2012.
[35]  Psychiatric GWAS Consortium Bipolar Disorder Working Group, “Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4,” Nature Genetics, vol. 43, no. 10, pp. 977–983, 2011.
[36]  L. G. Leahy, “Intermittent explosive disorder: a study in personalized psychopharmacotherapy,” Nurse Practitioner, vol. 39, no. 2, pp. 10–13, 2014.
[37]  S. Lawrence, “31-year-old female shows marked improvement in depression, agitation, and panic attacks after genetic testing was used to inform treatment,” Case Reports in Psychiatry, vol. 2014, Article ID 842349, 4 pages, 2014.
[38]  M. P. Leussis, J. M. Madison, and T. L. Petryshen, “Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology,” Biology of Mood & Anxiety Disorders, vol. 2, no. 1, p. 18, 2012.
[39]  C. C. Kuo and L. Lu, “Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones,” British Journal of Pharmacology, vol. 121, no. 6, pp. 1231–1238, 1997.
[40]  T. Jaeckle, “Patient with major depressive disorder responds to L-Methylfolate post-genetic testing,” Journal of Depression and Anxiety, vol. 3, no. 2, 2014.
[41]  N. A. Qureshi and A. Mohammed, “Mood disorders and complementary and alternative medicine: a literature review,” Neuropsychiatric Disease and Treatment, vol. 9, pp. 639–658, 2013.
[42]  S. J. Lewis, D. A. Lawlor, G. Davey Smith et al., “The thermolabile variant of MTHFR is associated with depression in the British Women's Heart and Health Study and a meta-analysis,” Molecular Psychiatry, vol. 11, no. 4, pp. 352–360, 2006.
[43]  J. G. Hoop, L. W. Roberts, K. A. Green Hammond, and N. J. Cox, “Psychiatrists' attitudes regarding genetic testing and patient safeguards: a preliminary study,” Genetic Testing, vol. 12, no. 2, pp. 245–252, 2008.
[44]  M. B. Lanktree, G. Zai, L. E. Vanderbeek et al., “Positive perception of pharmacogenetic testing for psychotropic medications,” Human Psychopharmacology, vol. 29, no. 3, pp. 287–291, 2014.
[45]  E. Schmidt, “Even with no treatment available, cancer patients want to know metastasis risk,” 2009, http://www.newsroom.ucla.edu/portal/ucla/cancer-patients-want-genetic-testing-93297.aspx.
[46]  H. Calsbeek, M. Morren, J. Bensing, and M. Rijken, “Knowledge and attitudes towards genetic testing: a two year follow-up study in patients with asthma, diabetes mellitus and cardiovascular disease,” Journal of Genetic Counseling, vol. 16, no. 4, pp. 493–504, 2007.
[47]  M. R. DiMatteo, H. S. Lepper, and T. W. Croghan, “Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence,” Archives of Internal Medicine, vol. 160, no. 14, pp. 2101–2107, 2000.
[48]  W. S. Fenton, C. R. Blyler, and R. K. Heinssen, “Determinants of medication compliance in schizophrenia: empirical and clinical findings,” Schizophrenia Bulletin, vol. 23, no. 4, pp. 637–651, 1997.
[49]  B. H. Miller and C. Wahlestedt, “MicroRNA dysregulation in psychiatric disease,” Brain Research, vol. 1338, pp. 89–99, 2010.
[50]  H. Rong, T. B. Liu, K. J. Yang et al., “MicroRNA-134 plasma levels before and after treatment for bipolar mania,” Journal of Psychiatric Research, vol. 45, no. 1, pp. 92–95, 2011.
[51]  T. Ikegame, M. Bundo, Y. Murata, K. Kasai, T. Kato, and K. Iwamoto, “DNA methylation of the BDNF gene and its relevance to psychiatric disorders,” Journal of Human Genetics, vol. 58, no. 7, pp. 434–438, 2013.
[52]  O. M. Wolkowitz, J. Wolf, W. Shelly, et al., “Serum BDNF levels before treatment predict SSRI response in depression,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 35, no. 7, pp. 1623–1630, 2011.
[53]  S. Sen, R. Duman, and G. Sanacora, “Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications,” Biological Psychiatry, vol. 64, no. 6, pp. 527–532, 2008.
[54]  N. Perroud, A. Salzmann, P. Prada et al., “Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene,” Translational Psychiatry, vol. 3, article e207, 2013.
[55]  M. Fuchikami, S. Morinobu, A. Kurata, S. Yamamoto, and S. Yamawaki, “Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus,” International Journal of Neuropsychopharmacology, vol. 12, no. 1, pp. 73–82, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413