全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

E. coli Induced Experimental Model of Primary Biliary Cirrhosis: At Last

DOI: 10.1155/2014/848373

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recurrent urinary tract infections (UTI) have been considered potential triggers of primary biliary cirrhosis (PBC), an autoimmune cholestatic liver disease characterised by progressive destruction of intrahepatic bile ducts. Additional support for the link made between PBC and UTI was based on early observations of recurrent episodes of bacteriuria in female patients with PBC. A series of large epidemiological studies demonstrated a strong correlation between recurrent UTI and PBC, initiating a series of studies investigating the role of Escherichia coli (E. coli, the most prevalent organism isolated in women with UTI) as a trigger of PBC. Immunological evidence of B- and T-cell cross-reactive responses implicating PBC-specific autoantigens and E. coli mimics have been clearly demonstrated, adding support to the notion that E. coli is a potential infectious inducer of PBC in susceptible individuals. One of the major limitations in proving the E. coli/PBC association was the lack of reliable E. coli-infected animal models of PBC. This review provides an overview of the evidence linking this infectious agent with PBC and discusses the pros and cons of a recently developed E. coli-infected animal model of PBC. 1. Introduction Primary biliary cirrhosis (PBC) is an autoimmune cholestatic liver disease characterized by high-titre antimitochondrial antibodies (AMA), as well as disease-specific antinuclear antibodies (ANA) [1, 2]. The presence of AMA is considered pathognomonic for PBC, as serum AMA positivity predicts disease development in asymptomatic individuals [3]. The natural course of PBC is generally slow, although the disease course is unpredictable. Over the years, the progression of the disease leads to the inflammatory destruction of small intrahepatic bile ducts, which progresses to fibrosis, cirrhosis, and eventual liver failure [1]. As the disease overwhelmingly affects middle-aged females frequently complaining from recurrent urinary tract infections (UTI), Escherichia coli (E. coli) has been postulated as a potential trigger for the development of the disease [4, 5]. Epidemiological, immunological, and microbiological data have provided strong evidence in support of the pathogenic link between this bacterium and the disease [6–18]. These data are comprehensively discussed elsewhere and will not be mentioned in the present report. AMA are directed against components of the 2-oxoacid dehydrogenase complexes, which mainly recognise the E2 subunit of the pyruvate dehydrogenase complex (PDC) in 90% of cases [2, 19]. In 20–70% of cases, the E2

References

[1]  M. M. Kaplan and M. E. Gershwin, “Primary biliary cirrhosis,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1261–1273, 2005.
[2]  D.-P. Bogdanos, H. Baum, and D. Vergani, “Antimitochondrial and other autoantibodies,” Clinics in Liver Disease, vol. 7, no. 4, pp. 759–777, 2003.
[3]  J. V. Metcalf, H. C. Mitchison, J. M. Palmer, D. E. Jones, M. F. Bassendine, and O. F. W. James, “Natural history of early primary biliary cirrhosis,” The Lancet, vol. 348, no. 9039, pp. 1399–1402, 1996.
[4]  A. K. Burroughs, I. J. Rosenstein, O. Epstein, J. M. Hamilton-Miller, W. Brumfitt, and S. Sherlock, “Bacteriuria and primary biliary cirrhosis,” Gut, vol. 25, no. 2, pp. 133–137, 1984.
[5]  P. Butler, J. M. T. Hamilton-Miller, N. McIntyre, and A. K. Burroughs, “Natural history of bacteriuria in women with primary biliary cirrhosis and the effect of antimicrobial therapy in symptomatic and asymptomatic groups,” Gut, vol. 36, no. 6, pp. 931–934, 1995.
[6]  D. S. Smyk, D. P. Bogdanos, S. Kriese, C. Billinis, A. K. Burroughs, and E. I. Rigopoulou, “Urinary tract infection as a risk factor for autoimmune liver disease: from bench to bedside,” Clinics and Research in Hepatology and Gastroenterology, vol. 36, no. 2, pp. 110–121, 2012.
[7]  P. Butler, F. Valle, J. M. T. Hamilton-Miller, W. Brumfitt, H. Baum, and A. K. Burroughs, “M2 mitochondrial antibodies and urinary rough mutant bacteria in patients with primary biliary cirrhosis and in patients with recurrent bacteriuria,” Journal of Hepatology, vol. 17, no. 3, pp. 408–414, 1993.
[8]  I. Mayo, P. Arizti, A. Pares et al., “Antibodies against the COOH-terminal region of E. coli ClpP protease in patients with primary biliary cirrhosis,” Journal of Hepatology, vol. 33, no. 4, pp. 528–536, 2000.
[9]  J. J. Palermo, “W1846 recurrent urinary tract infection in mice results in immune-mediated cholangiopathy similar to human primary biliary cirrhosis,” Gastroenterology, vol. 134, supplement 1, no. 4, p. A837, 2008.
[10]  S. Shimoda, M. Nakamura, H. Shigematsu et al., “Mimicry peptides of human PDC-E2 163-176 peptide, the immunodominant T- cell epitope of primary biliary cirrhosis,” Hepatology, vol. 31, no. 6, pp. 1212–1216, 2000.
[11]  S. Shimoda, J. van de Water, A. Ansari et al., “Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis,” The Journal of Clinical Investigation, vol. 102, no. 10, pp. 1831–1840, 1998.
[12]  H. Tanimoto, S. Shimoda, M. Nakamura et al., “Promiscuous T cells selected by Escherichia coli: OGDC-E2 in primary biliary cirrhosis,” Journal of Autoimmunity, vol. 20, no. 3, pp. 255–263, 2003.
[13]  K. Wakabayashi, K. Yoshida, P. S. C. Leung et al., “Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization,” Clinical and Experimental Immunology, vol. 155, no. 3, pp. 577–586, 2009.
[14]  D.-P. Bogdanos, H. Baum, P. Butler et al., “Association between the primary biliary cirrhosis specific anti-sp100 antibodies and recurrent urinary tract infection,” Digestive and Liver Disease, vol. 35, no. 11, pp. 801–805, 2003.
[15]  D.-P. Bogdanos, H. Baum, A. Grasso, et al., “Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis,” Journal of Hepatology, vol. 40, no. 1, pp. 31–39, 2004.
[16]  D.-P. Bogdanos, H. Baum, U. C. Sharma et al., “Antibodies against homologous microbial caseinolytic proteases P characterise primary biliary cirrhosis,” Journal of Hepatology, vol. 36, no. 1, pp. 14–21, 2002.
[17]  A. Parikh-Patel, E. B. Gold, H. Worman, K. E. Krivy, and M. E. Gershwin, “Risk factors for primary biliary cirrhosis in a cohort of patients from the United States,” Hepatology, vol. 33, no. 1, pp. 16–21, 2001.
[18]  M. E. Gershwin, C. Selmi, H. J. Worman, et al., “Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients,” Hepatology, vol. 42, no. 5, pp. 1194–1202, 2005.
[19]  P. S. C. Leung, R. L. Coppel, A. Ansari, S. Munoz, and M. E. Gershwin, “Antimitochondrial antibodies in primary biliary cirrhosis,” Seminars in Liver Disease, vol. 17, no. 1, pp. 61–69, 1997.
[20]  M. E. Gershwin and I. R. Mackay, “Primary biliary cirrhosis: paradigm or paradox for autoimmunity,” Gastroenterology, vol. 100, no. 3, pp. 822–833, 1991.
[21]  M. E. Gershwin and I. R. Mackay, “The causes of primary biliary cirrhosis: convenient and inconvenient truths,” Hepatology, vol. 47, no. 2, pp. 737–745, 2008.
[22]  D. P. Bogdanos and D. Vergani, “Bacteria and primary biliary cirrhosis,” Clinical Reviews in Allergy and Immunology, vol. 36, no. 1, pp. 30–39, 2009.
[23]  C. Selmi, D. L. Balkwill, P. Invernizzi, et al., “Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium,” Hepatology, vol. 38, no. 5, pp. 1250–1257, 2003.
[24]  A. K. Burroughs, P. Butler, M. J. E. Sternberg, and H. Baum, “Molecular mimicry in liver disease,” Nature, vol. 358, no. 6385, pp. 377–378, 1992.
[25]  J. van de Water, H. Ishibashi, R. L. Coppel, and M. E. Gershwin, “Molecular mimicry and primary biliary cirrhosis: premises not promises,” Hepatology, vol. 33, no. 4, pp. 771–775, 2001.
[26]  J. Wang, G. X. Yang, K. Tsuneyama, M. E. Gershwin, W. M. Ridgway, and P. S. Leung, “Animal models of primary biliary cirrhosis,” Seminars in Liver Disease, vol. 34, pp. 285–296, 2014.
[27]  S. P. M. Fussey, S. T. Ali, J. R. Guest, O. F. W. James, M. F. Bassendine, and S. J. Yeaman, “Reactivity of primary biliary cirrhosis sera Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 10, pp. 3987–3991, 1990.
[28]  S. P. Fussey, M. F. Bassendine, O. F. James, and S. J. Yeaman, “Characterisation of the reactivity of autoantibodies in primary biliary cirrhosis,” FEBS Letters, vol. 246, no. 1-2, pp. 49–53, 1989.
[29]  D. P. Bogdanos, H. Baum, D. Vergani, and A. K. Burroughs, “The role of E. coli infection in the pathogenesis of primary biliary cirrhosis,” Disease Markers, vol. 29, no. 6, pp. 301–311, 2010.
[30]  H. Shigematsu, S. Shimoda, M. Nakamura et al., “Fine specificity of T cells reactive to human PDC-E2 163-176 peptide, the immunodominant autoantigen in primary biliary cirrhosis: implications for molecular mimicry and cross-recognition among mitochondrial autoantigens,” Hepatology, vol. 32, no. 5, pp. 901–909, 2000.
[31]  J. J. Wang, G.-X. Yang, W. C. Zhang et al., “Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice,” Clinical and Experimental Immunology, vol. 175, no. 2, pp. 192–201, 2014.
[32]  S. Oertelt, Z. X. Lian, C. M. Cheng et al., “Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-βreceptor II dominant-negative mice,” Journal of Immunology, vol. 177, no. 3, pp. 1655–1660, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133