The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, followed by graft copolymer of itaconic acid and finally oxidized starches. Analytical techniques and synthesis of modified starches were also described. 1. Introduction Titration is an analytical technique commonly used in many research and industrial chemistry applications. This involves the measured addition of a solution of known concentration of chemical (titrant) to determine the concentration of another chemical (analyte) in a second solution. The chemical in the titrant reacts in a known manner with the analyte material. When the reaction of these chemicals/materials is complete, a surplus of the titrant is detected as a specific end point marking the end of titration. The end point can be determined by several methods: indicators of pH, redox indicators, potentiometry, conductometry, isothermal calorimetry, spectrophotometry, and amperometry [1]. Analytical techniques for this research included potentiometric titration. Potentiometric titration, based on the measurement of pH changes, is a versatile technique with a wide range of applications. It is a well-established analytical method always effective for simple acid-base systems [2, 3]. For over 70 years it has been applied to study macromolecules, whose early use was limited to the analysis of the behavior of proteins. At that time, the application for studying acid synthetic polymers was applied almost exclusively to poly(acrylic acid) and poly(methacrylic acid) [4]. Nowadays it is still used to investigate the dissociation behavior of poly(acrylic acid) [5] but has expanded to study poly(itaconic acid) [6, 7], copolymers of maleic acid with various olefins [5], styrene [8], and ionization amphiphilic diblock and triblock copolymers [9]. In this study the use of potentiometric titration for the characterization of native and modified starches technique is highlighted. The soluble natural polymers include polynucleotides, polypeptides, and polysaccharides such as starch, cellulose, and chitosan. Due to increased interest in the use of polysaccharides for a wide range of practical applications, potentiometric
References
[1]
S. Farris, L. Mora, G. Capretti, and L. Piergiovanni, “Charge density quantification of polyelectrolyte polysaccharides by conductometric titration: an analytical chemistry experiment,” Journal of Chemical Education, vol. 89, no. 1, pp. 121–124, 2012.
[2]
M. C. C. Azevedo and A. M. V. Cavaleiro, “The acid-base titration of a very weak acid: boric acid,” Journal of Chemical Education, vol. 89, no. 6, pp. 767–770, 2012.
[3]
J. Hurek and J. Nackiewicz, “A simple method for the consecutive determination of protonation constants through evaluation of formation curves,” Journal of Chemical Education, vol. 90, no. 5, pp. 604–608, 2013.
[4]
A. Katchalsky and P. Spitnik, “Potentiometric titrations of polymethacrylic acid laboratory of macromolecular chemistry, Hebrew University, Jerusalem,” Journal of Polymer Science, vol. 2, no. 4, pp. 432–446, 1947.
[5]
U. Lappan, U. Gei?ler, M. Oelmann, and S. Schwarz, “Apparent dissociation constants of polycarboxylic acids in presence of polycations,” Colloid and Polymer Science, vol. 290, no. 16, pp. 1665–1670, 2012.
[6]
S. Po?owiński, “Study of poly(itaconic acid) in aqueous solutions,” Polymers, vol. 51, no. 4, pp. 270–275, 2006.
[7]
D. Stawski and S. Polowinski, “Polymerization of itaconic acid,” Polimery, vol. 50, no. 2, pp. 118–165, 2005.
[8]
S. Banerjee, K. Sen, T. K. Pal, and S. K. Guha, “Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy,” International Journal of Pharmaceutics, vol. 436, no. 1-2, pp. 786–797, 2012.
[9]
O. Colombani, E. Lejeune, C. Charbonneau, C. Chassenieux, and T. Nicolai, “Ionization of amphiphilic acidic block copolymers,” The Journal of Physical Chemistry B, vol. 116, no. 25, pp. 7560–7565, 2012.
[10]
F. Vilaplana, J. Hasjim, and R. G. Gilbert, “Amylose content in starches: toward optimal definition and validating experimental methods,” Carbohydrate Polymers, vol. 88, no. 1, pp. 103–111, 2012.
[11]
L. Li, H. Jiang, M. Campbell, M. Blanco, and J.-L. Jane, “Characterization of maize amylose-extender (ae) mutant starches. Part I. Relationship between resistant starch contents and molecular structures,” Carbohydrate Polymers, vol. 74, no. 3, pp. 396–404, 2008.
[12]
Y. Song and J. Jane, “Characterization of barley starches of waxy, normal, and high amylose varieties,” Carbohydrate Polymers, vol. 41, no. 4, pp. 365–377, 2000.
[13]
D. X. Duan, E. Donner, Q. Liu, D. C. Smith, and F. Ravenelle, “Potentiometric titration for determination of amylose content of starch—a comparison with colorimetric method,” Food Chemistry, vol. 130, no. 4, pp. 1142–1145, 2012.
[14]
H. Yangcheng, H. Jiang, M. Blanco, and J. L. Jane, “Characterization of normal and waxy corn starch for bioethanol production,” Journal of Agricultural and Food Chemistry, vol. 61, no. 2, pp. 379–386, 2013.
[15]
X. Jiang, L. Chen, and W. Zhong, “A new linear potentiometric titration method for the determination of deacetylation degree of chitosan,” Carbohydrate Polymers, vol. 54, no. 4, pp. 457–463, 2003.
[16]
Y. Zhang, X. Zhang, R. Ding, J. Zhang, and J. Liu, “Determination of the degree of deacetylation of chitosan by potentiometric titration preceded by enzymatic pretreatment,” Carbohydrate Polymers, vol. 83, no. 2, pp. 813–817, 2011.
[17]
L. F. Zemlji?, D. ?akara, N. Michaelis, T. Heinze, and K. S. Kleinschek, “Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study,” Cellulose, vol. 18, no. 1, pp. 33–43, 2011.
[18]
L. J. C. B. Carvalho, C. R. Batista De Souza, J. C. de Mattos Cascardo, C. Bloch Jr., and L. Campos, “Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch,” Plant Molecular Biology, vol. 56, no. 4, pp. 643–659, 2004.
[19]
T. V. Shevchenko, E. A. Kondratov, E. V. Ul'rich, A. M. Popov, V. S. Lobanova, and I. O. Tokmakova, “On the variation of physicochemical properties of starch samples treated by microwave radiation,” Russian Journal of Applied Chemistry, vol. 86, no. 1, pp. 127–131, 2013.
[20]
N. E. Ihegwuagu, M. O. Omojola, M. O. Emeje, and O. O. Kunle, “Isolation and evaluation of some physicochemical properties of Parkia biglobosa starch,” Pure and Applied Chemistry, vol. 81, no. 1, pp. 97–104, 2009.
[21]
D. A. Alabi, O. R. Akinsulire, and M. A. Sanyaolu, “Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth,” African Journal of Biotechnology, vol. 4, no. 8, pp. 812–815, 2005.
[22]
R. F. Tester, J. Karkalas, and X. Qi, “Starch—composition, fine structure and architecture,” Journal of Cereal Science, vol. 39, no. 2, pp. 151–165, 2004.
[23]
N. Kavlani, V. Sharma, and L. Singh, “Various techniques for the modification of starch and the applications of its derivatives,” International Research Journal of Pharmacy, vol. 3, no. 5, pp. 25–31, 2012.
[24]
Y. Zheng, S. Hua, and A. Wang, “Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels,” Desalination, vol. 263, pp. 170–175, 2010.
[25]
E. Orozco-Guare?o, F. Santiago-Gutiérrez, J. L. Morán-Quiroz et al., “Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels,” Journal of Colloid and Interface Science, vol. 349, no. 2, pp. 583–593, 2010.
[26]
C. S. Marvel and T. H. Shepherd, “Polymerization reactions of itaconic acid and some of its derivatives,” Journal of Organic Chemistry, vol. 24, no. 5, pp. 599–605, 1959.
[27]
S. H. Tay, S. C. Pang, and S. F. Chin, “Facile synthesis of starch-maleate monoesters from native sago starch,” Carbohydrate Polymers, vol. 88, no. 4, pp. 1195–1200, 2012.
[28]
S. C. Pang, S. F. Chin, S. H. Tay, and F. M. Tchong, “Starch-maleate-polyvinyl alcohol hydrogels with controllable swelling behaviors,” Carbohydrate Polymers, vol. 84, no. 1, pp. 424–429, 2011.
[29]
S. Chattopadhyay, R. S. Singhal, and P. R. Kulkarni, “Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications,” Carbohydrate Polymers, vol. 34, no. 4, pp. 203–212, 1997.
[30]
R. J. Smith, “Production and use of hypochlorite oxidized starches,” in Starch Chemistry and Technology, R. L. Whistler and E. F. Paschall, Eds., vol. 2, pp. 620–625, Academic Press, New York, NY, USA, 1967.
[31]
J. F. Zhu, G. H. Zhang, and Z. C. Lai, “Synthesis and characterization of maize starch acetates and its biodegradable film,” Polymer—Plastics Technology and Engineering, vol. 46, no. 12, pp. 1135–1141, 2007.
[32]
D. Chen, C. Yand, and X. Qiu, “Aqueous polymerization of maleic acid and cross-linking of cotton cellulose by poly(maleic acid),” Industrial & Engineering Chemistry Research, vol. 44, no. 21, pp. 7921–7927, 2005.
[33]
P. Lanthong, R. Nuisin, and S. Kiatkamjornwong, “Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents,” Carbohydrate Polymers, vol. 66, no. 2, pp. 229–245, 2006.
[34]
X. Yi, S. Zhang, and B. Ju, “Preparation of water-soluble oxidized starch with high carbonyl content by sodium hypochlorite,” Starch: St?rke, vol. 66, no. 1-2, pp. 115–123, 2014.
[35]
F. F. Takizawa, G. de Oliveira, F. E. Konkel, and I. M. Demiate, “Characterization of tropical starches modified with potassium permanganate and lactic acid,” Brazilian Archives of Biology and Technology, vol. 47, no. 6, pp. 921–931, 2004.
[36]
S. Dash, S. Patel, and B. K. Mishra, “Oxidation by permanganate: synthetic and mechanistic aspects,” Tetrahedron, vol. 65, no. 4, pp. 707–739, 2009.
[37]
Z. Mao and C. Yang, “Polymeric multifunctional carboxylic acids as crosslinking agents for cotton cellulose: poly(itaconic acid) and in situ polymerization of itaconic acid,” Journal of Applied Polymer Science, vol. 79, pp. 319–326, 2000.
[38]
J. Singh, L. Kaur, and O. J. McCarthy, “Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review,” Food Hydrocolloids, vol. 21, no. 1, pp. 1–22, 2007.