全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Improved Unscented Particle Filter with Global Sampling Strategy

DOI: 10.1155/2014/175820

Full-Text   Cite this paper   Add to My Lib

Abstract:

Particle filter (PF) has many variations and one of the most popular is the unscented particle filter (UPF). UPF uses the unscented Kalman filter (UKF) to generate particles in the PF framework and has a better performance than the standard PF. However, UPF suffers from its high computation complexity because it has to execute UKF to each particle to obtain proposal distribution. This paper gives an improved UPF aiming at reducing the computation complexity of the algorithm. In comparison to the standard UPF, the new strategy generates proposal distribution from the mean and covariance value of the whole particles instead of from each particle. Thus the improved algorithm utilizes the characteristics of the whole particles and only needs to perform UKF algorithm once to get the proposal distribution at each time step. Experimental results show that, compared to standard UPF, the improved algorithm reduces the time consumption greatly almost without performance degradation. 1. Introduction Nonlinear and non-Gaussian filtering has a wide range of applications in many fields [1–3]. Among the many methods that have been proposed in the literature for these applications, particle filter (PF) has become one of the most popular. For decades PF has been applied to a variety of problems, such as computer vision, signal processing [4], target tracking [5], and financial pricing [6]. However when designing a PF a major problem is to choose a proper proposal distribution of the particles. Due to the fact that the particles are drawn from this distribution, and the weight values of particles are also related to this distribution, the performance of a PF is strongly influenced by the choice of the proposal distribution. To design better proposal distributions, several techniques based on linearization have been proposed. In one method, an extended Kalman filter (EKF) is used to generate the proposal distribution, and this is known as extended Kalman PF (EKPF). However, the linearization operation in EKPF introduces modeling errors, which can yield large estimation errors if the system is highly nonlinear [7]. To overcome this problem, a more accurate PF was proposed using unscented Kalman filter (UKF) to generate the proposal distribution [8]. The UKF can accurately compute the mean and covariance of nonlinear systems up to the second order of the Taylor series expansions. This type of particle filter using UKF to generate proposal distribution is known as the unscented particle filter (UPF). The UKF produces proposal distributions that exhibit a larger support

References

[1]  H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of markovian jump nonlinear time-delay systems over lossy sensor networks,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4665–4672, 2013.
[2]  H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.
[3]  Z. Wang, H. Dong, B. Shen, and H. Gao, “Finite-horizon filtering with missing measurements and quantization effects,” IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1707–1718, 2013.
[4]  Y. Yoshida, K. Hayashi, H. Sakai, and W. Bocquet, “Marginalized particle filter for blind signal detection with analog imperfections,” IEICE Transactions on Communications, vol. 93, no. 2, pp. 336–344, 2010.
[5]  F. Wang, Q. Guo, and Y. Lin, “A Kalman particle filter for bearing-only target tracking,” Journal of Computational Information Systems, vol. 7, no. 15, pp. 5628–5635, 2011.
[6]  D. Creal, “A survey of sequential Monte Carlo methods for economics and finance,” Econometric Reviews, vol. 31, no. 3, pp. 245–296, 2012.
[7]  O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing methods and recent advances in sequential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899–924, 2007.
[8]  R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, “The unscented particle filter,” Tech. Rep. CUED/F-INFENG/TR 380, Department of Engineering, Cambridge University, 2000.
[9]  S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
[10]  W. Fasheng and L. Yuejin, “Improving particle filter with a new sampling strategy,” in Proceedings of the 4th International Conference on Computer Science and Education, pp. 408–412, July 2009.
[11]  F. Wang, Y. Lin, T. Zhang, and J. Liu, “Particle filter with hybrid proposal distribution for nonlinear state estimation,” Journal of Computers, vol. 6, no. 11, pp. 2491–2501, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133