全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水通道蛋白生理学功能的研究进展
The Physiological Functions of Aquaporins

DOI: 10.12677/JPS.2014.24004, PP. 19-32

Keywords: AQP,膜整合蛋白,水通道,水转运
Aquaporin
, Integral Transmembrane Protein, Water Channel, Water Transport

Full-Text   Cite this paper   Add to My Lib

Abstract:

水通道蛋白是介导水跨细胞膜转运的膜整合蛋白,可以高选择性地通透水并且对体内水的转运发挥调控作用。对于水通道蛋白的研究经历了从发现到结构、功能的探索,研究结果表明水通道蛋白在机体多个组织器官都有表达,发挥重要的生理作用,包括肾脏的尿浓缩功能、外分泌腺的分泌功能、大脑水合功能、神经信号传导和新陈代谢等,水通道基因突变与某些疾病的发生发展有关。因此,研究水通道蛋白的生理功能可为阐明相关疾病的发病机制和确定药物靶点提供新的思路。本文就近年来水通道蛋白的生理学研究进展予以综述。
The aquaporins (AQPs) are a family of 13 small hydrophobic integral transmembrane water channel proteins involved in transcellular and transepithelial water movement and fluid transport. The study of aquaporins has experienced from discovery to the exploration of their physiological functions. It has been found that aquaporins are expressed in various tissues and organs and they have different physiological functions, including urine concentration, exocrine gland secretion, hydration of brain, transduction of neuronal signaling and metabolism. The studies on aquaporins can provide novel ideas to the mechanism and therapy of related diseases. This review article dis-cusses the recent researches on the physiological functions of AQPs in different tissues and organs.

References

[1]  Benga, G., Popescu, O., Borza, V., Pop, V.I., Muresan, A., Mocsy, I., Brain, A. and Wrigglesworth, J.M. (1986) Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport. European Journal of Cell Biology, 41, 252-262.
[2]  Denker, B.M., Smith, B.L., Kuhajda, F.P. and Agre, P. (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. The Journal of Biological Chemistry, 263, 15634-15642.
[3]  Day, R.E., Kitchen, P., Owen, D.S., Bland, C., Marshall, L., Conner, A.C., Bill, R.M. and Conner, M.T. (2014) Human aquaporins: Regulators of transcellular water flow. Biochimica et Biophysica Acta, 1840, 1492-1506.
[4]  Rojek, A., Praetorius, J., Frokiaer, J., Nielsen, S. and Fenton, R.A. (2008) A current view of the mammalian aquaglyceroporins. Annual Review of Physiology, 70, 301-327.
[5]  Verkman, A.S. (2012) Aquaporins in clinical medicine. Annual Review of Medicine, 63, 303-316.
[6]  Badaut, J., Fukuda, A.M., Jullienne, A. and Petry, K.G. (2014) Aquaporin and brain diseases. Biochimica et Biophysica Acta, 1840, 1554-1565.
[7]  Yang, B., Zador, Z. and Verkman, A.S. (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. The Journal of Biological Chemistry, 283, 15280-15286.
[8]  He, F. and Sun, Y.E. (2007) Glial cells more than support cells? The International Journal of Bio-chemistry & Cell Biology, 39, 661-665.
[9]  Nagelhus, E.A., Horio, Y., Inanobe, A., Fujita, A., Haug, F.M., Nielsen, S., Kurachi, Y. and Ottersen, O.P. (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia, 26, 47-54.
[10]  Nagelhus, E.A., Veruki, M.L., Torp, R., Haug, F.M., Laake, J.H., Nielsen, S., Agre, P. and Ottersen, O.P. (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: Polarized expression in Muller cells and fibrous astrocytes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18, 2506-2519.
[11]  Kong, H., Fan, Y., Xie, J., Ding, J., Sha, L., Shi, X., Sun, X. and Hu, G. (2008) AQP4 knockout im-pairs proliferation, migration and neuronal differentiation of adult neural stem cells. Journal of Cell Science, 121, 4029-4036.
[12]  Nagelhus, E.A. and Ottersen, O.P. (2013) Physiological roles of aquaporin-4 in brain. Physiological Reviews, 93, 1543- 1562.
[13]  Haj-Yasein, N.N., Vindedal, G.F., Eilert-Olsen, M., Gundersen, G.A., Skare, O., Laake, P., Klungland, A., Thoren, A.E., Burkhardt, J.M., Ottersen, O.P. and Nagelhus, E.A. (2011) Glial-conditional deletion of aquaporin-4 (AQP4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proceedings of the National Academy of Sciences of the United States of America, 108, 17815-17820.
[14]  Medici, V., Frassoni, C., Tassi, L., Spreafico, R. and Garbelli, R. (2011) Aquaporin 4 expression in control and epileptic human cerebral cortex. Brain Research, 1367, 330-339.
[15]  Benfenati, V., Caprini, M., Dovizio, M., Mylonakou, M.N., Fer-roni, S., Ottersen, O.P. and Amiry-Moghaddam, M. (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 108, 2563- 2568.
[16]  Saadoun, S., Bell, B.A., Verkman, A.S. and Papado-poulos, M.C. (2008) Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain: A Journal of Neurology, 131, 1087-1098.
[17]  Papadopoulos, M.C., Manley, G.T., Krishna, S. and Verkman, A.S. (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 1291-1293.
[18]  Mobasheri, A. and Marples, D. (2004) Expression of the AQP-1 water channel in normal human tissues: A semiquantitative study using tissue microarray technology. American Journal of Physiology Cell Physiology, 286, C529-C537.
[19]  Saadoun, S., Papadopoulos, M.C., Davies, D.C., Bell, B.A. and Krishna, S. (2002) Increased aquaporin-1 water channel expression in human brain tumours. British Journal of Cancer, 87, 621-623.
[20]  Oshio, K., Watanabe, H., Song, Y., Verkman, A.S. and Manley, G.T. (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19, 76-78.
[21]  Longatti, P.L., Basaldella, L., Orvieto, E., Fiorindi, A. and Carteri, A. (2004) Choroid plexus and aquaporin-1: A novel explanation of cerebrospinal fluid production. Pediatric Neurosurgery, 40, 277-283.
[22]  Tait, M.J., Saadoun, S., Bell, B.A. and Papadopoulos, M.C. (2008) Water movements in the brain: Role of aquaporins. Trends in Neurosciences, 31, 37-43.
[23]  Vacca, A., Ribatti, D., Roccaro, A.M., Frigeri, A. and Dammacco, F. (2001) Bone marrow angiogenesis in patients with active multiple myeloma. Seminars in Oncology, 28, 543-550.
[24]  Tomas-Camardiel, M., Venero, J.L., Herrera, A.J., De Pablos, R.M., Pintor-Toro, J.A., Machado, A. and Cano, J. (2005) Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: Protective effect by estradiol treatment in ovariectomized animals. Journal of Neuroscience Research, 80, 235-246.
[25]  Fischbarg, J. (2012) Water channels and their roles in some ocular tissues. Molecular Aspects of Medicine, 33, 638- 641.
[26]  Tran, T.L., Bek, T., la Cour, M., Nielsen, S., Prause, J.U., Hamann, S. and Heegaard, S. (2014) Altered aquaporin expression in glaucoma eyes. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 122, 772-780.
[27]  Li, J., Patil, R.V. and Verkman, A.S. (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Investigative Ophthalmology & Visual Science, 43, 573-579.
[28]  Jarius, S. and Wildemann, B. (2012) “Noteomielite” accompanied by acute amaurosis (1844): An early case of neuromyelitis optica. Journal of the Neurological Sciences, 313, 182-184.
[29]  Jarius, S. and Wildemann, B. (2012) The case of the Marquis de Causan (1804): An early account of visual loss associated with spinal cord inflammation. Journal of Neurology, 259, 1354-1357.
[30]  Jarius, S. and Wildemann, B. (2011) An early case of neuromyelitis optica: On a forgotten report by Jacob Lockhart Clarke, FRS. Multiple Sclerosis, 17, 1384-1386.
[31]  Lennon, V.A., Wingerchuk, D.M., Kryzer, T.J., Pittock, S.J., Lucchinetti, C.F., Fujihara, K., Nakashima, I. and Weinshenker, B.G. (2004) A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. The Lancet, 364, 2106-2112.
[32]  Lennon, V.A., Kryzer, T.J., Pittock, S.J., Verkman, A.S. and Hinson, S.R. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. The Journal of Experimental Medicine, 202, 473-477.
[33]  Hinson, S.R., Pittock, S.J., Lucchinetti, C.F., Roemer, S.F., Fryer, J.P., Kryzer, T.J. and Lennon, V.A. (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology, 69, 2221- 2231.
[34]  Ratelade, J., Bennett, J.L. and Verkman, A.S. (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. The Journal of Biological Chemistry, 286, 45156-45164.
[35]  Saadoun, S., Waters, P., Bell, B.A., Vincent, A., Verkman, A.S. and Papadopoulos, M.C. (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain: A Journal of Neurology, 133, 349-361.
[36]  Collongues, N. and de Seze, J. (2011) Current and future treatment approaches for neuromyelitis optica. Therapeutic Advances in Neurological Disorders, 4, 111-121.
[37]  Roemer, S.F., Parisi, J.E., Lennon, V.A., Benarroch, E.E., Lassmann, H., Bruck, W., Mandler, R.N., Weinshenker, B.G., Pittock, S.J., Wingerchuk, D.M. and Lucchinetti, C.F. (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain: A Journal of Neurology, 130, 1194-1205.
[38]  Misu, T., Fujihara, K., Kakita, A., Konno, H., Nakamura, M., Watanabe, S., Takahashi, T., Nakashima, I., Takahashi, H. and Itoyama, Y. (2007) Loss of aquaporin 4 in lesions of neuromyelitis optica: Distinction from multiple sclerosis. Brain: A Journal of Neurology, 130, 1224-1234.
[39]  Lucchinetti, C.F., Mandler, R.N., McGavern, D., Bruck, W., Gleich, G., Ransohoff, R.M., Trebst, C., Weinshenker, B., Wingerchuk, D., Parisi, J.E. and Lassmann, H. (2002) A role for humoral mechanisms in the patho-genesis of Devic’s neuromyelitis optica. Brain: A Journal of Neurology, 125, 1450-1461.
[40]  Wingerchuk, D.M., Lennon, V.A., Lucchinetti, C.F., Pittock, S.J. and Weinshenker, B.G. (2007) The spectrum of neuromyelitis optica. The Lancet Neurology, 6, 805-815.
[41]  Papadopoulos, M.C. and Verkman, A.S. (2012) Aquaporin 4 and neuromyelitis optica. The Lancet Neurology, 11, 535- 544.
[42]  Paul, F., Jarius, S., Aktas, O., Bluthner, M., Bauer, O., Appelhans, H., Franciotta, D., Bergamaschi, R., Littleton, E., Palace, J., Seelig, H.P., Hohlfeld, R., Vincent, A. and Zipp, F. (2007) Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Medicine, 4, e133.
[43]  Verkman, A.S., Phuan, P.W., Asavapanumas, N. and Tradtrantip, L. (2013) Biology of AQP4 and anti-AQP4 antibody: Therapeutic implications for NMO. Brain Pathology, 23, 684-695.
[44]  Tradtrantip, L., Zhang, H., Saadoun, S., Phuan, P.W., Lam, C., Papadopoulos, M.C., Bennett, J.L. and Verkman, A.S. (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology, 71, 314- 322.
[45]  Tradtrantip, L., Zhang, H., Anderson, M.O., Saadoun, S., Phuan, P.W., Papadopoulos, M.C., Bennett, J.L. and Verkman, A.S. (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26, 2197-2208.
[46]  Tradtrantip, L., Ratelade, J., Zhang, H. and Verkman, A.S. (2013) Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G into therapeutic antibody. Annals of Neurology, 73, 77-85.
[47]  Lu, D.C., Zhang, H., Zador, Z. and Verkman, A.S. (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22, 3216- 3223.
[48]  Li, J. and Verkman, A.S. (2001) Impaired hearing in mice lacking aquaporin-4 water channels. The Journal of Biological Chemistry, 276, 31233-31237.
[49]  Huang, D., Chen, P., Chen, S., Nagura, M., Lim, D.J. and Lin, X. (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hearing Research, 165, 85-95.
[50]  Kitahara, T., Fukushima, M., Uno, Y., Mishiro, Y. and Kubo, T. (2003) Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurological Research, 25, 865-870.
[51]  Mhatre, A.N., Jero, J., Chiappini, I., Bolasco, G., Barbara, M. and Lalwani, A.K. (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere’s disease. Hearing Research, 170, 59-69.
[52]  Oshio, K., Binder, D.K., Yang, B., Schecter, S., Verkman, A.S. and Manley, G.T. (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience, 127, 685-693.
[53]  Stoodley, M.A., Jones, N.R. and Brown, C.J. (1996) Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Research, 707, 155-164.
[54]  Zhang, H. and Verkman, A.S. (2010) Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. The Journal of Biological Chemistry, 285, 5896-5906.
[55]  Butler, T.L., Au, C.G., Yang, B., Egan, J.R., Tan, Y.M., Hardeman, E.C., North, K.N., Verkman, A.S. and Winlaw, D.S. (2006) Cardiac aquaporin expression in humans, rats, and mice. American Journal of Physiology Heart and Circulatory Physiology, 291, H705-H713.
[56]  Verkman, A.S. (2002) Aquaporin water channels and endothelial cell function. Journal of Anatomy, 200, 617-627.
[57]  Rutkovskiy, A., Stenslokken, K.O., Mariero, L.H., Skrbic, B., Amiry-Moghaddam, M., Hillestad, V., Valen, G., Perreault, M.C., Ottersen, O.P., Gullestad, L., Dahl, C.P. and Vaage, J. (2012) Aquaporin-4 in the heart: Expression, regulation and functional role in ischemia. Basic Research in Cardiology, 107, 280.
[58]  Verkman, A.S., Matthay, M.A. and Song, Y. (2000) Aquaporin water channels and lung physiology. American Journal of Physiology Lung Cellular and Molecular Physiology, 278, L867-L879.
[59]  Nielsen, S., King, L.S., Christensen, B.M. and Agre, P. (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. The American Journal of Physiology, 273, C1549-C1561.
[60]  Borok, Z. and Verkman, A.S. (2002) Lung edema clearance: 20 years of progress: Invited review: Role of aquaporin water channels in fluid transport in lung and airways. Journal of Applied Physiology, 93, 2199-2206.
[61]  Wang, K., Feng, Y.L., Wen, F.Q., Chen, X.R., Ou, X.M., Xu, D., Yang, J. and Deng, Z.P. (2007) Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease. Acta Pharmacologica Sinica, 28, 1166-1174.
[62]  Bai, C., Fukuda, N., Song, Y., Ma, T., Matthay, M.A. and Verkman, A.S. (1999) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. The Journal of Clinical Investigation, 103, 555-561.
[63]  Ma, T., Fukuda, N., Song, Y., Matthay, M.A. and Verkman, A.S. (2000) Lung fluid transport in aquaporin-5 knockout mice. The Journal of Clinical Investigation, 105, 93-100.
[64]  She, J., Bi, J., Tong, L., Song, Y. and Bai, C. (2013) New insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edema. Diagnostic Pathology, 8, 193.
[65]  Jin, Y., Yu, G., Peng, P., Zhang, Y. and Xin, X. (2013) Down-regulated expression of AQP5 on lung in rat DIC model induced by LPS and its effect on the development of pulmonary edema. Pulmonary Pharmacology & Therapeutics, 26, 661-665.
[66]  Nejsum, L.N. (2005) The renal plumbing system: Aquaporin water channels. Cellular and Molecular Life Sciences: CMLS, 62, 1692-1706.
[67]  Verkman, A.S. (2008) Mammalian aquaporins: Diverse physiological roles and potential clinical significance. Expert Reviews in Molecular Medicine, 10, e13.
[68]  Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F. and Sasaki, S. (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361, 549-552.
[69]  Morishita, Y., Matsuzaki, T., Hara-chikuma, M., Andoo, A., Shimono, M., Matsuki, A., Kobayashi, K., Ikeda, M., Yamamoto, T., Verkman, A., Kusano, E., Ookawara, S., Takata, K., Sasaki, S. and Ishibashi, K. (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Molecular and Cellular Biology, 25, 7770-7779.
[70]  Devuyst, O. and Yool, A.J. (2010) Aquaporin-1: New developments and perspectives for peritoneal dialysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 30, 135-141.
[71]  Marples, D., Knepper, M.A., Christensen, E.I. and Nielsen, S. (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. The American Journal of Physiology, 269, C655- C664.
[72]  Noda, Y. and Sasaki, S. (2005) Trafficking mechanism of water channel aquaporin-2. Biology of the Cell, 97, 885-892.
[73]  Nedvetsky, P.I., Tamma, G., Beulshausen, S., Valenti, G., Rosenthal, W. and Klussmann, E. (2009) Regulation of aquaporin-2 trafficking. Handbook of Experimental Pharmacology, 190, 133-157.
[74]  Wesche, D., Deen, P.M. and Knoers, N.V. (2012) Congenital nephrogenic diabetes insipidus: The current state of affairs. Pediatric Nephrology, 27, 2183-2204.
[75]  Tamarappoo, B.K., Yang, B. and Verkman, A.S. (1999) Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. The Journal of Biological Chemistry, 274, 34825-34831.
[76]  Sasaki, S. (2012) Aquaporin 2: From its discovery to molecular structure and medical implications. Molecular Aspects of Medicine, 33, 535-546.
[77]  Yang, B., Ma, T., Xu, Z. and Verkman, A.S. (1999) cDNA and genomic cloning of mouse aquaporin-2: Functional analysis of an orthologous mutant causing nephrogenic diabetes insipidus. Genomics, 57, 79-83.
[78]  Yang, B., Zhao, D., Qian, L. and Verkman, A.S. (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. American Journal of Physiology Renal Physiology, 291, F465-F472.
[79]  Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. The Journal of Biological Chemistry, 276, 2775- 2779.
[80]  Yang, B., Zhao, D. and Verkman, A.S. (2009) Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23, 503-512.
[81]  Galizia, L., Pizzoni, A., Fernandez, J., Rivarola, V., Capurro, C. and Ford, P. (2012) Func-tional interaction between AQP2 and TRPV4 in renal cells. Journal of Cellular Biochemistry, 113, 580-589.
[82]  Hasler, U., Nunes, P., Bouley, R., Lu, H.A., Matsuzaki, T. and Brown, D. (2008) Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. The Journal of Biological Chemistry, 283, 26643-26661.
[83]  Holmes, R.P. (2012) The role of renal water channels in health and disease. Molecular Aspects of Medicine, 33, 547- 552.
[84]  Chou, C.L., Ma, T., Yang, B., Knepper, M.A. and Verkman, A.S. (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. The American Journal of Physiology, 274, C549-C554.
[85]  Zhang, J., An, Y., Gao, J., Han, J., Pan, X., Pan, Y., Tie, L. and Li, X. (2012) Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide. PloS ONE, 7, e45976.
[86]  Ikeda, M., Beitz, E., Kozono, D., Guggino, W.B., Agre, P. and Yasui, M. (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. The Journal of Biological Chemistry, 277, 39873-39879.
[87]  Matsuzaki, T., Suzuki, T., Koyama, H., Tanaka, S. and Takata, K. (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 47, 1275-1286.
[88]  Ikarashi, N., Kon, R., Iizasa, T., Suzuki, N., Hiruma, R., Suenaga, K., Toda, T., Ishii, M., Hoshino, M., Ochiai, W. and Sugiyama, K. (2012) Inhibition of aquaporin-3 water channel in the colon induces diarrhea. Biological & Pharmaceutical Bulletin, 35, 957-962.
[89]  Wang, K.S., Komar, A.R., Ma, T., Filiz, F., McLeroy, J., Hoda, K., Verkman, A.S. and Bastidas, J.A. (2000) Gastric acid secretion in aquaporin-4 knockout mice. American Journal of Physiology Gastrointestinal and Liver Physiology, 279, G448-G453.
[90]  Wang, K.S., Ma, T., Filiz, F., Verkman, A.S. and Bastidas, J.A. (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. American Journal of Physiology Gastrointestinal and Liver Physiology, 279, G463- G470.
[91]  Elkjaer, M.L., Nejsum, L.N., Gresz, V., Kwon, T.H., Jensen, U.B., Frokiaer, J. and Nielsen, S. (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. American Journal of Physiology Renal Physiology, 281, F1047-F1057.
[92]  Matsuzaki, T., Tajika, Y., Ablimit, A., Aoki, T., Hagiwara, H. and Takata, K. (2004) Aquaporins in the digestive system. Medical Electron Microscopy: Official Journal of the Clinical Electron Microscopy Society of Japan, 37, 71-80.
[93]  Garcia, F., Kierbel, A., Larocca, M.C., Gradilone, S.A., Splinter, P., LaRusso, N.F. and Marinelli, R.A. (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. The Journal of Biological Chemistry, 276, 12147-12152.
[94]  Lebeck, J. (2014) Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. Journal of Molecular Endocrinology, 52, R165-R178.
[95]  McConnell, N.A., Yunus, R.S., Gross, S.A., Bost, K.L., Clemens, M.G. and Hughes Jr., F.M. (2002) Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology, 143, 2905- 2912.
[96]  Qu, F., Wang, F.F., Lu, X.E., Dong, M.Y., Sheng, J.Z., Lv, P.P., Ding, G.L., Shi, B.W., Zhang, D. and Huang, H.F. (2010) Altered aquaporin expression in women with polycystic ovary syndrome: Hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Human Re-production, 25, 1441-1450.
[97]  Ishibashi, K., Kuwahara, M., Gu, Y., Kageyama, Y., Tohsaka, A., Suzuki, F., Marumo, F. and Sasaki, S. (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. The Journal of Biological Chemistry, 272, 20782-20786.
[98]  Yeung, C.H. (2010) Aquaporins in spermatozoa and testicular germ cells: Identification and potential role. Asian Journal of Andrology, 12, 490-499.
[99]  Chen, Q. and Duan, E.K. (2011) Aquaporins in sperm osmoadaptation: An emerging role for volume regulation. Acta Pharmacologica Sinica, 32, 721-724.
[100]  Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q.X., Ma, T. and Duan, E. (2011) Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Research, 21, 922-933.
[101]  Moretti, E., Terzuoli, G., Mazzi, L., Iacoponi, F. and Collodel, G. (2012) Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Systems Biology in Reproductive Medicine, 58, 129-135.
[102]  Tsukaguchi, H., Shayakul, C., Berger, U.V., Mackenzie, B., Devidas, S., Guggino, W.B., van Hoek, A.N. and Hediger, M.A. (1998) Molecular characterization of a broad selectivity neutral solute channel. The Journal of Biological Chemistry, 273, 24737-24743.
[103]  Pastor-Soler, N., Isnard-Bagnis, C., Herak-Kramberger, C., Sabolic, I., Van Hoek, A., Brown, D. and Breton, S. (2002) Expression of aquaporin 9 in the adult rat epididymal epithelium is modulated by androgens. Biology of Reproduction, 66, 1716-1722.
[104]  Hermo, L., Krzeczunowicz, D. and Ruz, R. (2004) Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. Journal of Andrology, 25, 494-505.
[105]  Sougrat, R., Morand, M., Gondran, C., Barre, P., Gobin, R., Bonte, F., Dumas, M. and Verbavatz, J.M. (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. The Journal of Investigative Dermatology, 118, 678-685.
[106]  Sugiyama, Y., Ota, Y., Hara, M. and Inoue, S. (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochimica et Biophysica Acta, 1522, 82-88.
[107]  Hara, M. and Verkman, A.S. (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 7360-7365.
[108]  Olsson, M., Broberg, A., Jernas, M., Carlsson, L., Rudemo, M., Suurkula, M., Svensson, P.A. and Benson, M. (2006) Increased expression of aquaporin 3 in atopic eczema. Allergy, 61, 1132-1137.
[109]  Voss, K.E., Bollag, R.J., Fussell, N., By, C., Sheehan, D.J. and Bollag, W.B. (2011) Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. Archives of Dermatological Research, 303, 591-600.
[110]  Kishida, K., Kuriyama, H., Funahashi, T., Shimomura, I., Kihara, S., Ouchi, N., Nishida, M., Nishizawa, H., Matsuda, M., Takahashi, M., Hotta, K., Nakamura, T., Yamashita, S., Tochino, Y. and Matsuzawa, Y. (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. The Journal of Biological Chemistry, 275, 20896-20902.
[111]  Laforenza, U., Scaffino, M.F. and Gastaldi, G. (2013) Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PloS ONE, 8, e54474.
[112]  Frigeri, A., Nicchia, G.P., Balena, R., Nico, B. and Svelto, M. (2004) Aquaporins in skeletal muscle: Reassessment of the functional role of aquaporin-4. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 905-907.
[113]  Yang, B., Verbavatz, J.M., Song, Y., Vetrivel, L., Manley, G., Kao, W.M., Ma, T. and Verkman, A.S. (2000) Skeletal muscle function and water permeability in aquaporin-4 deficient mice. American Journal of Physiology Cell Physiology, 278, C1108-C1115.
[114]  Basco, D., Blaauw, B., Pisani, F., Sparaneo, A., Nicchia, G.P., Mola, M.G., Reggiani, C., Svelto, M. and Frigeri, A. (2013) AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations. PloS ONE, 8, e58712.
[115]  Hagiwara, K., Shinozaki, T., Matsuzaki, T., Takata, K. and Takagishi, K. (2013) Immunolocalization of water channel aquaporins in human knee articular cartilage with intact and early degenerative regions. Medical Molecular Morphology, 46, 104-108.
[116]  Iatridis, J.C., MacLean, J.J., O’Brien, M. and Stokes, I.A. (2007) Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine, 32, 1493-1497.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133