Recently,
fluorescence technique becomes very useful. It can allow for addressing a
fundamental problem of cellular mechanism besides characterizing the species
inside the cell to facilitate the diagnostic and prognostic value. Manipulation
with fluorescent dyes provides many possibilities for their use as tags,
probes, and sensors. These types can be intrinsic or extrinsic to the cell.
They can become not only silent observers, but also participants, modulators or
disruptors of specific activities outline the biological functions can be
successfully studied quantitatively and qualitatively with fluorescence
techniques.
References
[1]
Publicover, S., Harper, C.V. and Barratt, C. (2007) [Ca2+]i Signalling in Sperm—Making the Most of What You’ve Got. Nature Cell Biology, 9, 235-242. http://dx.doi.org/10.1038/ncb0307-235
[2]
Florman, H.M., Jungnickel, M.K. and Sutton, K.A. (2008) Regulating the Acrosome Reaction. International Journal of Developmental Biology, 52, 503-510. http://dx.doi.org/10.1387/ijdb.082696hf
[3]
Ren, D. (2011) Calcium Signaling in Sperm: Help from Prostasomes. Science Signaling, 4, pe27. http://dx.doi.org/10.1126/scisignal.2002102
[4]
Baldia, E., Luconi, M., Bonaccorsi, L., Maggi, M., Francavilla, S., Gabriele, A., et al. (1999) Nongenomic Progesterone Receptor on Human Spermatozoa: Biochemical Aspects and Clinical Implications. Steroids, 64, 143-148. http://dx.doi.org/10.1016/S0039-128X(98)00100-7
[5]
Espino, J., Mediero, M., Lozano, G.M., Bejarano, I., Ortiz, á., García, J.F., et al. (2009) Reduced Levels of Intracellular Calcium Releasing in Spermatozoa from Asthenozoospermic Patients. Reproductive Biology and Endocrinology, 7, 11. http://dx.doi.org/10.1186/1477-7827-7-11
[6]
Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., et al. (2009) Ca2+-Stores in Sperm: Their Identities and Functions. Reproduction, 138, 425-437. http://dx.doi.org/10.1530/REP-09-0134
[7]
Jimenez-Gonzalez, C., Michelangeli, F., Harper, C., Barratt, C. and Publicover, S. (2006) Calcium Signalling in Human Spermatozoa: A Specialized “Toolkit” of Channels, Transporters and Stores. Human Reproduction Update, 12, 253-267. http://dx.doi.org/10.1093/humupd/dmi050
[8]
Kirkman-Brown, J.C., Punt, E.L., Barratt, C.L. and Publicover, S.J. (2002) Zona Pellucida and Progesterone-Induced Ca2+ Signaling and Acrosome Reaction in Human Spermatozoa. Journal of Andrology, 23, 306-315.
[9]
Krausz, C., Bonaccorsi, L., Luconi, M., Fuzzi, B., Criscuoli, L., Pellegrini, S., et al. (1995) Intracellular Calcium Increase and Acrosome Reaction in Response to Progesterone in Human Spermatozoa Are Correlated with In-Vitro Fertilization. Human Reproduction, 10, 120-124. http://dx.doi.org/10.1093/humrep/10.1.120
[10]
Suarez, S.S. (2008) Control of Hyperactivation in Sperm. Human Reproduction Update, 14, 647-657. http://dx.doi.org/10.1093/humupd/dmn029
[11]
Baldi, E., Luconi, M., Muratori, M., Marchiani, S., Tamburrino, L. and Forti, G. (2009) Nongenomic Activation of Spermatozoa by Steroid Hormones: Facts and Fictions. Molecular and Cellular Endocrinology, 308, 39-46. http://dx.doi.org/10.1016/j.mce.2009.02.006
[12]
Yanagimachi, R. (1994) Fertility of Mammalian Spermatozoa: Its Development and Relativity. Zygote, 2, 371-372. http://dx.doi.org/10.1017/S0967199400002240
[13]
Darszon, A., Acevedo, J.J., Galindo, B.E., Hernández-González, E.O., Nishigaki, T., Trevino, C.L., et al. (2006) Sperm Channel Diversity and Functional Multiplicity. Reproduction, 131, 977-988. http://dx.doi.org/10.1530/rep.1.00612
[14]
Navarro, B., Kirichok, Y. and Clapham, D.E. (2007) KSper, a pH-Sensitive K+ Current that Controls Sperm Membrane Potential. Proceedings of the National Academy of Sciences of the United States of America, 104, 7688-7692. http://dx.doi.org/10.1073/pnas.0702018104
[15]
Nixon, B., Bielanowicz, A., Anderson, A.L., Walsh, A., Hall, T., Mccloghry, A. and Aitken, R.J. (2010) Elucidation of the Signaling Pathways that Underpin Capacitation-Associated Surface Phosphotyrosine Expression in Mouse Spermatozoa. Journal of Cellular Physiology, 224, 71-83.
[16]
Visconti, P.E. and Kopf, G.S. (1998) Regulation of Protein Phosphorylation during Sperm Capacitation. Biology of Reproduction, 59, 1-6. http://dx.doi.org/10.1095/biolreprod59.1.1
[17]
Marquez, B. and Suarez, S.S. (2007) Bovine Sperm Hyperactivation Is Promoted by Alkaline-Stimulated Ca2+ Influx. Biology of Reproduction, 76, 660-665. http://dx.doi.org/10.1095/biolreprod.106.055038
[18]
Fraire-Zamora, J.J. and González-Martínez, M.T. (2004) Effect of Intracellular pH on Depolarization-Evoked Calcium Influx in Human Sperm. American Journal of Physiology-Cell Physiology, 287, C1688-C1696. http://dx.doi.org/10.1152/ajpcell.00141.2004
[19]
Lishko, P.V. and Kirichok, Y. (2010) The Role of Hv1 and CatSper Channels in Sperm Activation. The Journal of Physiology, 588, 4667-4672. http://dx.doi.org/10.1113/jphysiol.2010.194142
[20]
Bock, G. and Marsh, J. (1988) Proton Passage across Cell Membranes. Symposium on Proton Passage across Cell Membranes, CIBA Foundation, London, 9-11 February 1988.
[21]
Shapiro, B.M. (1987) The Existential Decision of a Sperm. Cell, 49, 293-294. http://dx.doi.org/10.1016/0092-8674(87)90276-5
[22]
Meizel, S. and Deamer, D.W. (1978) The pH of the Hamster Sperm Acrosome. Journal of Histochemistry & Cytochemistry, 26, 98-105.
[23]
Vredenburgh-Wilberg, W. and Parrish, J. (1995) Intracellular pH of Bovine Sperm Increases during Capacitation. Molecular Reproduction and Development, 40, 490-502. http://dx.doi.org/10.1002/mrd.1080400413
[24]
Cook, S.P. and Babcock, D.F. (1993) Activation of Ca2+ Permeability by cAMP Is Coordinated through the pHi Increase Induced by Speract. Journal of Biological Chemistry, 268, 22408-22413.
[25]
Darszon, A., Beltrán, C., Felix, R., Nishigaki, T. and Trevino, C.L. (2001) Ion Transport in Sperm Signaling. Developmental Biology, 240, 1-14. http://dx.doi.org/10.1006/dbio.2001.0387
[26]
Wennemuth, G., Westenbroek, R.E., Xu, T., Hille, B. and Babcock, D.F. (2000) CaV2.2 and CaV2.3 (N- and R-Type) Ca2+ Channels in Depolarization-Evoked Entry of Ca2+ into Mouse Sperm. Journal of Biological Chemistry, 275, 21210-21217. http://dx.doi.org/10.1074/jbc.M002068200
[27]
Haugland, R.P. (2002) Handbook of Fluorescent Probes and Research Products. Molecular Probes, Eugene.
[28]
Xia, J., Reigada, D., Mitchell, C.H. and Ren, D. (2007) CATSPER Channel-Mediated Ca2+ Entry into Mouse Sperm Triggers a Tail-to-Head Propagation. Biology of Reproduction, 77, 551-559. http://dx.doi.org/10.1095/biolreprod.107.061358
[29]
Nash, K., Lefievre, L., Peralta-Arias, R., Morris, J., Morales-Garcia, A., Connolly, T., et al. (2010) Techniques for Imaging Ca2+ Signaling in Human Sperm. Journal of Visualized Experiments: JoVE.
[30]
Santi, C.M., Martínez-López, P., de la Vega-Beltrán, J.L., Butler, A., Alisio, A., Darszon, A., et al. (2010) The SLO3 Sperm-Specific Potassium Channel Plays a Vital Role in Male Fertility. FEBS Letters, 584, 1041-1046. http://dx.doi.org/10.1016/j.febslet.2010.02.005
[31]
Zeng, X.H., Yang, C., Kim, S.T., Lingle, C.J. and Xia, X.M. (2011) Deletion of the Slo3 Gene Abolishes Alkalization-Activated K+ Current in Mouse Spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 108, 5879-5884. http://dx.doi.org/10.1073/pnas.1100240108