全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seasonal Changes in Testes Vascularisation in the Domestic Cat (Felis domesticus): Evaluation of Microvasculature, Angiogenic Activity, and Endothelial Cell Expression

DOI: 10.1155/2012/583798

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some male seasonal breeders undergo testicular growth and regression throughout the year. The objective of this study was to understand the effect of seasonality on: (i) microvasculature of cat testes; (ii) angiogenic activity in testicular tissue in vitro; and (iii) testicular endothelial cells expression throughout the year. Testicular vascular areas increased in March and April, June and July, being the highest in November and December. Testes tissue differently stimulated in vitro angiogenic activity, according to seasonality, being more evident in February, and November and December. Even though CD143 expression was higher in December, smaller peaks were present in April and July. As changes in angiogenesis may play a role on testes vascular growth and regression during the breeding and non-breeding seasons, data suggest that testicular vascularisation in cats is increased in three photoperiod windows of time, November/December, March/April and June/July. This increase in testicular vascularisation might be related to higher seasonal sexual activity in cats, which is in agreement with the fact that most queens give birth at the beginning of the year, between May and July, and in September. 1. Introduction The study of the vasculature of the testis has attracted scientists’ attention for many centuries, especially at the end of the 19th and throughout the 20th century. This research has been performed in a large variety of animal species such as rat, mouse, rabbit, guinea pig, dog, ram, bull, boar, horse, marsupials, man, and other primates [1–4]. It has been long known that the physiologic role of the pampiniform plexus, on thermoregulation of the testes. This is a highly efficient countercurrent heat exchanger in which the arterial blood is precooled before it reaches the testis, while venous blood is warmed to body temperature before it returns to the abdomen [5]. It is nevertheless very rare to find references on the vasculature of cat testes (Felis domesticus). Angiogenesis is physiologically modulated through a dynamic balance between the production and release of angiogenic/mitogenic growth factors or antiangiogenic/anti-mitogenic substances [6–9]. In the adult, physiological angiogenesis is mostly restricted to the female reproductive tract during the ovarian/uterine cycle [10–13]. Nevertheless, in the male, physiologic gonadal angiogenesis has also been described. Testicular angiogenesis is known to increase during testicular recrudescence in seasonal breeders such as the hamster [14] or to decrease in response to food restriction in

References

[1]  S. Ergun, J. Stingl, and A. F. Holstein, “Microvasculature of the human testis in correlation to Leydig cells and seminiferous tubules,” Andrologia, vol. 26, no. 5, pp. 255–262, 1994.
[2]  S. A. Gunn and T. C. Gould, “Vasculature of the testes and adnexa,” in Handbook of Physiology, R. O. Greep and E. B. Astwood, Eds., pp. 117–172, William and Wilkins, Baltimore, Md, USA, 1975.
[3]  C. Oliveira, A. M. Orsi, C. A. Vicentini, and H. E. Duarte, “Microvasculariza??o testicular no hamster (Mesocricetus auratus),” Naturalia, vol. 16, pp. 103–109, 1991.
[4]  T. R. Weerasooriya and T. Yamamoto, “Three-dimensional organization of the vasculature of the rat spermatic cord and testis. A scanning electron-microscopic study of vascular corrosion casts,” Cell and Tissue Research, vol. 241, no. 2, pp. 317–323, 1985.
[5]  B. G. Brackett, “Male reproduction in mammals,” in Dukes' Physiology of Domestic Animals, O. William, Ed., pp. 670–691, 12th edition, 2004.
[6]  O. Hudlicka, “Development of microcirculation: capillary growth and adaptation,” in Handbook of Physiology, E. M. Renkin and C. C. Michael, Eds., vol. 4 of Section 2: The Cardiovascular System, Part 1: Microcirculation, pp. 165–216, American Physiological Society, Washington, DC, USA, 1 edition, 1984.
[7]  J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science, vol. 235, no. 4787, pp. 442–447, 1987.
[8]  M. C. Espinosa Cervantes and A. Rosado García, “Angiogenesis in reproductive physiology. Follicular development, formation and maintenance of the corpus luteum,” Ginecologia y Obstetricia de Mexico, vol. 70, pp. 17–27, 2002.
[9]  T. M. Hazzard, R. M. Rohan, T. A. Molskness, J. W. Fanton, R. J. D'Amato, and R. L. Stouffer, “Injection of antiangiogenic agents into the macaque preovulatory follicle: disruption of corpus luteum development and function,” Endocrine, vol. 17, no. 3, pp. 199–206, 2002.
[10]  L. P. Reynolds, S. D. Killilea, and D. A. Redmer, “Angiogenesis in the female reproductive system,” FASEB Journal, vol. 6, no. 3, pp. 886–892, 1992.
[11]  H. G. Augustin, K. Braun, I. Telemenakis, U. Modlich, and W. Kuhn, “Ovarian angiogenesis: phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression,” American Journal of Pathology, vol. 147, no. 2, pp. 339–351, 1995.
[12]  G. Ferreira-Dias, P. P. Bravo, L. Mateus, D. A. Redmer, and J. A. Medeiros, “Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle,” Domestic Animal Endocrinology, vol. 30, no. 4, pp. 247–259, 2006.
[13]  R. P. Roberto da Costa, G. Ferreira-Dias, L. Mateus et al., “Endometrial nitric oxid production and nitric oxid synthasis in the equine endometrium: relationship with microvascular density during the estruos cycle,” Domestic Animal Endocrinology, vol. 32, pp. 287–302, 2007.
[14]  A. Mayerhofer, A. P. Sinha Hikim, A. Bartke, and L. D. Russell, “Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster,” Anatomical Record, vol. 224, no. 4, pp. 495–507, 1989.
[15]  M. Carvalho, L. Mateus, F. Afonso et al., “Testicular angiogenic activity in response to food restriction in rabbits,” Reproduction, vol. 137, no. 3, pp. 509–515, 2009.
[16]  R. Medhamurthy, R. Suresh, S. S. Paul, and N. R. Moudgal, “Correlation of seasonal changes in sperm output with endocrinological changes in the adult male bonnet monkey, Macaca radiata,” Journal of Biosciences, vol. 19, no. 1, pp. 67–74, 1994.
[17]  R. B. Moreland, M. Elaine Richardson, N. Lamberski, and J. A. Long, “Characterizing the reproductive physiology of the male Southern black howler monkey, Alouatta caraya,” Journal of Andrology, vol. 22, no. 3, pp. 395–403, 2001.
[18]  S. Monecke, M. Saboureau, A. Malan, D. Bonn, M. Masson-Pévet, and P. Pévet, “Circannual phase response curves to short and long photoperiod in the European Hamster,” Journal of Biological Rhythms, vol. 24, no. 5, pp. 413–426, 2009.
[19]  B. Pérez and E. Mateos, “Effect of photoperiod on semen production and quality in bucks of Verata and Malaguena breeds,” Small Ruminant Research, vol. 23, no. 1, pp. 23–28, 1996.
[20]  S. M. Hammoudi, A. A?t-Amrane, T. B. Belhamiti, B. Khiati, A. Niar, and D. Guetarni, “Seasonal variations of sexual activity of local bucks in western Algeria,” African Journal of Biotechnology, vol. 9, no. 3, pp. 362–368, 2010.
[21]  M. J. Daniels, T. C. M. Wright, K. P. Bland, and A. C. Kitchener, “Seasonality and reproduction in wild-living cats in Scotland,” Acta Theriologica, vol. 47, no. 1, pp. 73–84, 2002.
[22]  F. H. Bronson and P. D. Heideman, “Seasonal regulation of reproduction in mammals,” in Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 541–583, Raven, New York, NY, USA, 1994.
[23]  K. A. Young and R. J. Nelson, “Short photoperiods reduce vascular endothelial growth factor in the testes of Peromyscus leucopus,” American Journal of Physiology, vol. 279, no. 3, pp. R1132–R1137, 2000.
[24]  B. J. Prendergast, L. J. Kriegsfeld, and R. J. Nelson, “Photoperiodic polyphenisms in rodents: neuroendocrine mechanisms, costs, and functions,” Quarterly Review of Biology, vol. 76, no. 3, pp. 293–325, 2001.
[25]  L. M. Pyter, A. K. Hotchkiss, and R. J. Nelson, “Photoperiod-induced differential expression of angiogenesis genes in testes of adult Peromyscus leucopus,” Reproduction, vol. 129, no. 2, pp. 201–209, 2005.
[26]  G. M. Ferreira-Dias, P. M. Serr?o, J. F. Costa Dur?o, and J. R. Silva, “Microvascular development and growth of uterine tissue during the estrous cycle in mares,” American Journal of Veterinary Research, vol. 62, no. 4, pp. 526–530, 2001.
[27]  D. A. Redmer, A. T. Grazul, J. D. Kirsch, and L. P. Reynolds, “Angiogenic activity of bovine corpora lutea at several stages of luteal development,” Journal of Reproduction and Fertility, vol. 82, no. 2, pp. 627–634, 1988.
[28]  G. Alexandre-Pires, “Aspects of the placental vascularisation of the rabbit female (Oryctolagus cuniculus) when gestation occurs under induced anaemic conditions,” Brazilian Journal of Morphology Science, vol. 15, pp. 85–92, 1998.
[29]  G. Alexandre-Pires, D. Pais, and J. A. Esperan?a Pina, “Intermediary spleen microvasculature in Canis familiaris-morphological evidences of a closed circulation,” Anatomia, Histologia, Embryologia, vol. 32, pp. 1–8, 2003.
[30]  G. Alexandre-Pires, M. C. Algueró, L. Mendes-Jorge, H. Trindade, M. Correia, and J. A. Esperan?a Pina, “Immunophenotyping of lymphocyte subsets in the third eyelid tissue in dogs (Canis familiaris): morphological, microvascular, and secretory aspects of this ocular adnexa,” Microscopy Research and Technique, vol. 71, no. 7, pp. 521–528, 2008.
[31]  M. Klagsbrun and P. A. D'Amore, “Regulators of angiogenesis,” Annual Review of Physiology, vol. 53, pp. 217–239, 1991.
[32]  J. K. Findlay, “Angiogenesis in reproductive tissues,” Journal of Endocrinology, vol. 111, no. 3, pp. 357–366, 1986.
[33]  R. J. Tomanek and G. C. Schatteman, “Angiogenesis: new insights and therapeutic potential,” Anatomical Record, vol. 261, no. 3, pp. 126–135, 2000.
[34]  H. Terayama, M. Naito, Y. Nakamura et al., “Corrosion casts of convoluted testicular arteries in mice and rats,” Systems Biology in Reproductive Medicine, vol. 51, no. 6, pp. 471–480, 2005.
[35]  J. E. Anderson and J. A. Thliveris, “Testicular histology in streptozotocin-induced diabetes,” Anatomical Record, vol. 214, no. 4, pp. 378–382, 1986.
[36]  M. Kormano, “Microvascular supply of the regenerated rat testis following cadmium injury,” Virchows Archiv Abteilung A Pathologische Anatomie, vol. 349, no. 3, pp. 229–235, 1970.
[37]  L. F. C. Brito, A. E. D. F. Silva, R. T. Barbosa, and J. P. Kastelic, “Testicular thermoregulation in Bos indicus, crossbred and Bos taurus bulls: relationship with scrotal, testicular vascular cone and testicular morphology, and effects on semen quality and sperm production,” Theriogenology, vol. 61, no. 2-3, pp. 511–528, 2004.
[38]  S. A. Rommel, D. A. Pabst, W. A. McLellan, J. G. Mead, and C. W. Potter, “Anatomical evidence for a countercurrent heat exchanger associated with dolphin testes,” Anatomical Record, vol. 232, no. 1, pp. 150–156, 1992.
[39]  A. I. Sealfon and A. W. Zorgniotti, “A theoretical model for testis thermoregulation,” Advances in Experimental Medicine and Biology, vol. 286, pp. 123–135, 1991.
[40]  B. D. Goldman, “Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement,” Journal of Biological Rhythms, vol. 16, no. 4, pp. 283–301, 2001.
[41]  M. J. Paul, I. Zucker, and W. J. Schwartz, “Tracking the seasons: the internal calendars of vertebrates,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1490, pp. 341–361, 2008.
[42]  S. Yasuo and T. Yoshimura, “Comparative analysis of the molecular basis of photoperiodic signal transduction in vertebrates,” Integrative and Comparative Biology, vol. 49, no. 5, pp. 507–518, 2009.
[43]  J. Joffre and M. Joffre, “Seasonal changes in the testicular blood flow of seasonally breeding mammals: dormouse, Glis glis, ferret, Mustella furo, and fox, Vulpes vulpes,” Journal of Reproduction and Fertility, vol. 34, no. 2, pp. 227–233, 1973.
[44]  L. K. Knotts, B. C. Bruot, and J. D. Glass, “Melatonin does not affect in vitro secretion of testosterone in white-footed mouse testis,” Journal of Pineal Research, vol. 5, no. 6, pp. 521–526, 1988.
[45]  W. D. Gram, H. W. Heath, H. A. Wichman, and G. R. Lynch, “Geographic variation in peromyscus leucopus: short-day induced reproductive regression and spontaneous recrudescence,” Biology of Reproduction, vol. 27, no. 2, pp. 369–373, 1982.
[46]  D. Gospodarowicz, J. Cheng, and G. M. Lui, “Corpus luteum angiogenic factor is related to fibroblast growth factor,” Endocrinology, vol. 117, no. 6, pp. 2383–2391, 1985.
[47]  R. L. Stouffer, J. C. Martínez-Chequer, T. A. Molskness, F. Xu, and T. M. Hazzard, “Regulation and action of angiogenic factors in the primate ovary,” Archives of Medical Research, vol. 32, no. 6, pp. 567–575, 2001.
[48]  T. Shimizu, J. Y. Jiang, H. Sasada, and E. Sato, “Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts,” Biology of Reproduction, vol. 67, no. 6, pp. 1846–1852, 2002.
[49]  D. J. Hicklin and L. M. Ellis, “Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 1011–1027, 2005.
[50]  P. C. Maisonpierre, C. Suri, P. F. Jones et al., “Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,” Science, vol. 277, no. 5322, pp. 55–60, 1997.
[51]  C. Tamanini and M. De Ambrogi, “Angiogenesis in developing follicle and corpus luteum,” Reproduction in Domestic Animals, vol. 39, no. 4, pp. 206–216, 2004.
[52]  C. Perollet, Z. C. Han, C. Savona, J. P. Caen, and A. Bikfalvi, “Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization,” Blood, vol. 91, no. 9, pp. 3289–3299, 1998.
[53]  H. Hashimoto, T. Ishikawa, K. Yamaguchi, M. Shiotani, and M. Fujisawa, “Experimental ischaemia-reperfusion injury induces vascular endothelial growth factor expression in the rat testis,” Andrologia, vol. 41, no. 4, pp. 216–221, 2009.
[54]  R. C. Bott, R. M. McFee, D. T. Clopton, C. Toombs, and A. S. Cupp, “Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat,” Biology of Reproduction, vol. 75, no. 1, pp. 56–67, 2006.
[55]  K. Reisinger, N. Baal, T. McKinnon, K. Münstedt, and M. Zygmunt, “The gonadotropins: tissue-specific angiogenic factors?” Molecular and Cellular Endocrinology, vol. 269, no. 1-2, pp. 65–80, 2007.
[56]  G. S. Hwang, S. W. Wang, W. M. Tseng, C. H. Yu, and P. S. Wang, “Effect of hypoxia on the release of vascular endothelial growth factor and testosterone in mouse TM3 Leydig cells,” American Journal of Physiology, vol. 292, pp. E1763–E1769, 2007.
[57]  K. C. Caires, J. De Avila, and D. J. McLean, “Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis,” Reproduction, vol. 138, no. 4, pp. 667–677, 2009.
[58]  M. B. Frungieri, S. I. Gonzalez-Calvar, A. Bartke, and R. S. Calandra, “Influence of age and photoperiod on steroidogenic function of the testis in the golden hamster,” International Journal of Andrology, vol. 22, no. 4, pp. 243–252, 1999.
[59]  O. Collin and A. Bergh, “Leydig cells secrete factors which increase vascular permeability and endothelial proliferation,” International Journal of Andrology, vol. 19, no. 4, pp. 221–228, 1996.
[60]  B. P. Setchell and R. M. Sharpe, “Effect of injected human chorionic gonadotrophin on capillary permeability, extracellular fluid volume and the flow of lymph and blood in the testes of rats,” Journal of Endocrinology, vol. 91, no. 2, pp. 245–254, 1981.
[61]  B. Geesaman, J. Villanueva-Meyer, D. Bluestein, L. Miller, I. Mena, and J. Rajfer, “Effects of multiple injections of HCG on testis blood flow,” Urology, vol. 40, no. 1, pp. 81–83, 1992.
[62]  A. Bergh, J. E. Damber, and N. Van Rooijen, “The human chorionic gonadotrophin-induced inflammation-like response is enhanced in macrophage-depleted rat testes,” Journal of Endocrinology, vol. 136, no. 3, pp. 415–419, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413