全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Morphometric Analysis of Cranial Shape in Fossil and Recent Euprimates

DOI: 10.1155/2012/478903

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantitative analysis of morphology allows for identification of subtle evolutionary patterns or convergences in anatomy that can aid ecological reconstructions of extinct taxa. This study explores diversity and convergence in cranial morphology across living and fossil primates using geometric morphometrics. 33 3D landmarks were gathered from 34 genera of euprimates (382 specimens), including the Eocene adapiforms Adapis and Leptadapis and Quaternary lemurs Archaeolemur, Palaeopropithecus, and Megaladapis. Landmark data was treated with Procrustes superimposition to remove all nonshape differences and then subjected to principal components analysis and linear discriminant function analysis. Haplorhines and strepsirrhines were well separated in morphospace along the major components of variation, largely reflecting differences in relative skull length and width and facial depth. Most adapiforms fell within or close to strepsirrhine space, while Quaternary lemurs deviated from extant strepsirrhines, either exploring new regions of morphospace or converging on haplorhines. Fossil taxa significantly increased the area of morphospace occupied by strepsirrhines. However, recent haplorhines showed significantly greater cranial disparity than strepsirrhines, even with the inclusion of the unusual Quaternary lemurs, demonstrating that differences in primate cranial disparity are likely real and not simply an artefact of recent megafaunal extinctions. 1. Introduction Euprimates comprises two principal sister groups: Strepsirrhini, including Lemuriformes and Lorisiformes; and Haplorhini, including Tarsiiformes and Simiiformes (Anthropoidea). Strepsirrhines have a smaller geographic range, occupying parts of Southern Africa, Madagascar, and Southeast Asia, than do haplorhines, which, excluding humans, occupy every continent except Australia and Antarctica. In addition, haplorhine primates are far more speciose (~300 species) than strepsirrhines (~100 species) [1]. Tarsiiformes have previously been grouped with the strepsirrhines as “prosimians”, but most recent molecular and morphological analyses [2–4] have placed them firmly within Haplorhini (but see [5]). Estimates of the time of divergence of strepsirrhines and haplorhines are heavily debated. The earliest euprimate currently recognised is the late Paleocene Altiatlasius [6, 7]. However, molecular clock models and statistical models based on fossil occurrences place the origin of Euprimates between 70–103 mya (million years ago), well into the Cretaceous [8], despite the lack of any unambiguous placental

References

[1]  D. E. Wilson and D. M. Reeder, Mammal Species of the World. A Taxonomic and Geographic Reference, Johns Hopkins University Press, Baltimore, Md, USA, 3rd edition, 2005.
[2]  C. Poux and E. J. P. Douzery, “Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP,” American Journal of Physical Anthropology, vol. 124, no. 1, pp. 1–16, 2004.
[3]  J. Schmitz, M. Ohme, and H. Zischler, “SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates,” Genetics, vol. 157, no. 2, pp. 777–784, 2001.
[4]  E. R. Seiffert, J. M. G. Perry, E. L. Simons, and D. M. Boyer, “Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates,” Nature, vol. 461, no. 7267, pp. 1118–1121, 2009.
[5]  H. J. Chatterjee, S. Y. Ho, I. Barnes, and C. Groves, “Estimating the phylogeny and divergence times of primates using a supermatrix approach,” BMC Evolutionary Biology, vol. 9, no. 1, article 259, 2009.
[6]  J. I. Bloch, M. T. Silcox, D. M. Boyer, and E. J. Sargis, “New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1159–1164, 2007.
[7]  E. R. Seiffert, E. L. Simons, W. C. Clyde et al., “Basal anthropoids from Egypt and the antiquity of Africa's higher primate radiation,” Science, vol. 310, no. 5746, pp. 300–304, 2005.
[8]  R. D. Wilkinson, M. E. Steiper, C. Soligo, R. D. Martin, Z. Yang, and S. Tavaré, “Dating primate divergences through an integrated analysis of palaeontological and molecular data,” Systematic Biology, vol. 60, no. 1, pp. 16–31, 2011.
[9]  A. Goswami, G. V.R. Prasad, P. Upchurch et al., “A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 39, pp. 16333–16338, 2011.
[10]  J. J. Jaeger, K. C. Beard, Y. Chaimanee et al., “Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids,” Nature, vol. 467, no. 7319, pp. 1095–1098, 2010.
[11]  J. J. Jaeger, T. Thein, M. Benammi et al., “A new primate from the Middle Eocene of Myanmar and the Asian early origin of anthropoids,” Science, vol. 286, no. 5439, pp. 528–530, 1999.
[12]  K. C. Beard, T. Qi, M. R. Dawson, B. Wang, and C. Li, “A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China,” Nature, vol. 368, no. 6472, pp. 604–609, 1994.
[13]  S. Bajpai, R. F. Kay, B. A. Williams, D. P. Das, V. V. Kapur, and B. N. Tiwari, “The oldest Asian record of Anthropoidea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11093–11098, 2008.
[14]  K. D. Rose, R. S. Rana, A. Sahni et al., “Early eocene primates from Gujarat, India,” Journal of Human Evolution, vol. 56, no. 4, pp. 366–404, 2009.
[15]  B. Sigé, J. Jaeger, J. Sudre, and M. Vianey-Liaud, “Altiatlasius koulchiin. gen. et sp., primate omomyidé du Paléocène supérieur du Maroc, et les origines des euprimates,” Palaeontographica Abteilung A, vol. 214, no. 1-2, pp. 31–56, 1990.
[16]  E. R. Miller, G. F. Gunnell, and R. D. Martin, “Deep time and the search for anthropoid origins,” American Journal of Physical Anthropology, vol. 41, pp. 60–95, 2005.
[17]  B. A. Williams, R. F. Kay, and E. C. Kirk, “New perspectives on anthropoid origins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 4797–4804, 2010.
[18]  K. Beard, “A new genus of Tarsiidae (Mammalia: Primates) from the middle Eocene of Shanxi Province, China, with notes on the historical biogeography of tarsiers,” Bulletin of the Carnegie Museum of Natural History, vol. 34, pp. 260–277, 1998.
[19]  D. T. Rasmussen, G. C. Conroy, and E. L. Simons, “Tarsier-like locomotor specializations in the oligocene primate Afrotarsius,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14848–14850, 1998.
[20]  K. C. Beard and J. Wang, “The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan Provinces, People's Republic of China,” Journal of Human Evolution, vol. 46, no. 4, pp. 401–432, 2004.
[21]  E. R. Seiffert, “Early evolution and biogeography of lorisiform strepsirrhines,” American Journal of Primatology, vol. 69, no. 1, pp. 27–35, 2007.
[22]  A. D. Yoder, M. Cartmill, M. Ruvolo, K. Smith, and R. Vilgalys, “Ancient single origin for Malagasy primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 5122–5126, 1996.
[23]  A. D. Yoder and Z. Yang, “Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context,” Molecular Ecology, vol. 13, no. 4, pp. 757–773, 2004.
[24]  K. P. Karanth, T. Delefosse, B. Rakotosamimanana, T. J. Parsons, and A. D. Yoder, “Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5090–5095, 2005.
[25]  L. R. Godfrey and W. L. Jungers, “The extinct sloth lemurs of Madagascar,” Evolutionary Anthropology, vol. 12, no. 6, pp. 252–263, 2003.
[26]  D. A. Burney, L. P. Burney, L. R. Godfrey et al., “A chronology for late prehistoric Madagascar,” Journal of Human Evolution, vol. 47, no. 1-2, pp. 25–63, 2004.
[27]  M. A. Tornow, “Systematic analysis of the Eocene primate family Omomyidae using gnathic and postcranial data,” Bulletin of the Peabody Museum of Natural History, vol. 49, no. 1, pp. 43–129, 2008.
[28]  M. Godinot, “Evolution: reviewed article, a summary of adapiform systematics and phylogeny,” Folia Primatologica, vol. 69, no. 1, pp. 218–249, 1998.
[29]  J. L. Franzen, P. D. Gingerich, J. Habersetzer, J. H. Hurum, W. von Koenigswald, and B. H. Smith, “Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology,” PLoS One, vol. 4, no. 5, Article ID e5723, 2009.
[30]  S. Maiolino, D. M. Boyer, J. I. Bloch, C. C. Gilbert, and J. Groenke, “Evidence for a grooming claw in a North American adapiform primate: implications for anthropoid origins,” PloS One, vol. 7, 2012.
[31]  G. Marroig and J. M. Cheverud, “A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World Monkeys,” Evolution, vol. 55, no. 12, pp. 2576–2600, 2001.
[32]  P. O'Higgins and N. Jones, “Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation,” Journal of Anatomy, vol. 193, no. 2, pp. 251–272, 1998.
[33]  A. Cardini and S. Elton, “Variation in guenon skulls (I): species divergence, ecological and genetic differences,” Journal of Human Evolution, vol. 54, no. 5, pp. 615–637, 2008.
[34]  S. R. Frost, L. F. Marcus, F. L. Bookstein, D. P. Reddy, and E. Delson, “Cranial allometry, phylogeography, and systematics of large-bodied papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data,” Anatomical Record Part A, vol. 275, no. 2, pp. 1048–1072, 2003.
[35]  D. E. Lieberman, C. F. Ross, and M. J. Ravosa, “The primate cranial base: ontogeny, function, and integration,” American Journal of Physical Anthropology, vol. 31, pp. 117–169, 2000.
[36]  C. F. Ross and E. C. Kirk, “Evolution of eye size and shape in primates,” Journal of Human Evolution, vol. 52, no. 3, pp. 294–313, 2007.
[37]  J. G. Fleagle, C. C. Gilbert, and A. L. Baden, “Primate cranial diversity,” American Journal of Physical Anthropology, vol. 142, no. 4, pp. 565–578, 2010.
[38]  F. J. Rohlf, “Rotational fit (Procrustes) methods,” in Proceedings of the Michigan Morphometrics Workshop, F. J. Rohlf and F. L. Bookstein, Eds., pp. 227–236, Museum of Zoology, University of Michigan, Mich, USA, 1990.
[39]  M. L. Zelditch, D. L. Swiderski, H. D. Sheets, and W. L. Fink, Geometric Morphometrics for Biologists: A Primer, Elsevier Academic Press, San Diego, Calif, USA, 2004.
[40]  C. P. Klingenberg, “MorphoJ: an integrated software package for geometric morphometrics,” Molecular Ecology Resources, vol. 11, no. 2, pp. 353–357, 2011.
[41]  H. D. Sheets, “Integrated Morphometrics Package (IMP) 7,” 2010, http://www3.canisius.edu/~sheets/imp7.htm.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413