全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dexmedetomidine versus Remifentanil for Sedation during Awake Fiberoptic Intubation

DOI: 10.1155/2012/753107

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study compared remifentanil and dexmedetomidine as awake fiberoptic intubation (AFOI) anesthetics. Thirty-four adult ASA I-III patients were enrolled in a double-blinded randomized pilot study to receive remifentanil (REM) or dexmedetomidine (DEX) for sedation during AFOI (nasal and oral). Thirty patients completed the study and received 2?mg midazolam IV and topical anesthesia. The REM group received a loading dose of 0.75?mcg/kg followed by an infusion of 0.075?mcg/kg/min. The DEX group received a loading dose of 0.4?mcg/kg followed by an infusion of 0.7?mcg/kg/hr. Time to sedation, number of intubation attempts, Ramsay sedation scale (RSS) score, bispectral index (BIS), and memory recall were recorded. All thirty patients were successfully intubated by AFOI (22 oral intubations/8 nasal). First attempt success rate with AFOI was higher in the REM group than the DEX group, 72% and 38% ( ), respectively. The DEX group took longer to attain RSS of ≥3 and to achieve BIS <80, as compared to the REM group. Postloading dose verbal recall was poorer in the DEX group. Dexmedetomidine seems a useful adjunct for patients undergoing AFOI but is dependent on dosage and time. Further studies in the use of dexmedetomidine for AFOI are warranted. 1. Introduction Awake nasal or oral flexible fiberoptic intubation (AFOI) is usually the primary method for airway management in the expected difficult airway. Experience with AFOI is not easily acquired, and success of the procedure is also highly dependent on adequate preparation and sedation techniques, especially in training programs [1]. Optimal conditions for AFOI include that a patient be comfortable, cooperative, free of oropharyngeal blood and secretions, and able to maintain their airway with spontaneous ventilation. In order to achieve these conditions, the pharmacologic agent chosen for sedation should be short acting, easily titratable, provide the required amount of sedation and have little suppression of spontaneous ventilation. Controlled sedation and analgesia are paramount to AFOI, but deep sedation can result in loss of the airway with serious consequences. Techniques to improve success rate have included nasal over oral intubation (not always possible or not indicated in studies) and different protocols for sedation (sevoflurane, propofol and remifentanil with titrated or target controlled infusion) [1–9]. There have been numerous reports of remifentanil and propofol used either alone or in combination to achieve an adequate level of sedation for such procedures. The advantages of remifentanil for

References

[1]  M. Guglielmi, L. Urbaz, C. Tedesco, A. Pusceddu, A. Sogni, and G. Ronzoni, “A structured training program for awake fiber optic intubation: teaching the complete package,” Minerva Anestesiologica, vol. 76, no. 9, pp. 699–706, 2010.
[2]  D. Péan, H. Floch, C. Beliard et al., “Propofol versus sevoflurane for fiberoptic intubation under spontaneous breathing anesthesia in patients difficult to intubate,” Minerva Anestesiologica, vol. 76, no. 10, pp. 780–786, 2010.
[3]  A. B. P. Donaldson, M. Meyer-Witting, and A. Roux, “Awake fibreoptic intubation under remifentanil and propofol target-controlled infusion,” Anaesthesia and Intensive Care, vol. 30, no. 1, pp. 93–95, 2002.
[4]  G. Neidhart, A. F. Kovács, D. H. Bremerich, and P. Kessler, “Remifentanil/propofol for fiberoptic intubation. A case report,” Anaesthesist, vol. 49, no. 6, pp. 523–526, 2000.
[5]  A. M. Machata, C. Gonano, A. Holzer et al., “Awake nasotracheal fiberoptic intubation: patient comfort, intubating conditions, and hemodynamic stability during conscious sedation with remifentanil,” Anesthesia and Analgesia, vol. 97, no. 3, pp. 904–908, 2003.
[6]  W. Puchner, P. Egger, F. Pühringer, A. L?ckinger, J. Obwegeser, and H. Gombotz, “Evaluation of remifentanil as single drug for awake fiberoptic intubation,” Acta Anaesthesiologica Scandinavica, vol. 46, no. 4, pp. 350–354, 2002.
[7]  M. D. Reusche and T. D. Egan, “Remifentanil for conscious sedation and analgesia during awake fiberoptic tracheal intubation: a case report with pharmacokinetic simulations,” Journal of Clinical Anesthesia, vol. 11, no. 1, pp. 64–68, 1999.
[8]  O. H. Mingo, K. J. Ashpole, C. J. Irving, and M. W. M. Rucklidge, “Remifentanil sedation for awake fibreoptic intubation with limited application of local anaesthetic in patients for elective head and neck surgery,” Anaesthesia, vol. 63, no. 10, pp. 1065–1069, 2008.
[9]  M. R. Rai, T. M. Parry, A. Dombrovskis, and O. J. Warner, “Remifentanil target-controlled infusion vs propofol target-controlled infusion for conscious sedation for awake fibreoptic intubation: a double-blinded randomized controlled trial,” British Journal of Anaesthesia, vol. 100, no. 1, pp. 125–130, 2008.
[10]  R. M. Venn, C. J. Bradshaw, R. Spencer et al., “Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit,” Anaesthesia, vol. 54, no. 12, pp. 1136–1142, 1999.
[11]  R. M. Venn, P. J. Newman, and R. M. Grounds, “A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit,” Intensive Care Medicine, vol. 29, no. 2, pp. 201–207, 2003.
[12]  S. R. Arain and T. J. Ebert, “The efficacy, side effects, and recovery characteristics of dexmedetomidine versus propofol when used for intraoperative sedation,” Anesthesia and Analgesia, vol. 95, no. 2, pp. 461–466, 2002.
[13]  A. Y. Bekker, B. Kaufman, H. Samir, and W. Doyle, “The use of dexmedetomidine infusion for awake craniotomy,” Anesthesia and Analgesia, vol. 92, no. 5, pp. 1251–1253, 2001.
[14]  J. D. Tobias and J. W. Berkenbosch, “Initial experience with dexmedetomidine in paediatric-aged patients,” Paediatric Anaesthesia, vol. 12, no. 2, pp. 171–175, 2002.
[15]  C. S. Scher and M. C. Gitlin, “Dexmedetomidine and low-dose ketamine provide adequate sedation for awake fibreoptic intubation,” Canadian Journal of Anesthesia, vol. 50, no. 6, pp. 607–610, 2003.
[16]  B. Abdelmalak, L. Makary, J. Hoban, and D. J. Doyle, “Dexmedetomidine as sole sedative for awake intubation in management of the critical airway,” Journal of Clinical Anesthesia, vol. 19, no. 5, pp. 370–373, 2007.
[17]  S. D. Bergese, B. Khabiri, W. D. Roberts, M. B. Howie, T. D. McSweeney, and M. A. Gerhardt, “Dexmedetomidine for conscious sedation in difficult awake fiberoptic intubation cases,” Journal of Clinical Anesthesia, vol. 19, no. 2, pp. 141–144, 2007.
[18]  S. A. Grant, D. S. Breslin, D. B. MacLeod, D. Gleason, and G. Martin, “Dexmedetomidine infusion for sedation during fiberoptic intubation: a report of three cases,” Journal of Clinical Anesthesia, vol. 16, no. 2, pp. 124–126, 2004.
[19]  M. L. Jaakola, M. Salonen, R. Lehtinen, and H. Scheinin, “The analgesic action of dexmedetomidine—a novel α2-adrenoceptor agonist—in healthy volunteers,” Pain, vol. 46, no. 3, pp. 281–285, 1991.
[20]  M. A. Ramsay, T. M. Savege, B. R. Simpson, and R. Goodwin, “Controlled sedation with alphaxalone-alphadolone,” British medical journal, vol. 2, no. 920, pp. 656–659, 1974.
[21]  J. E. Hall, T. D. Uhrich, J. A. Barney, S. R. Arain, and T. J. Ebert, “Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions,” Anesthesia and Analgesia, vol. 90, no. 3, pp. 699–705, 2000.
[22]  C. A. Boehm, E. L. Carney, R. J. Tallarida, and R. P. Wilson, “Midazolam enhances the analgesic properties of dexmedetomidine in the rat,” Veterinary Anaesthesia and Analgesia, vol. 37, no. 6, pp. 550–556, 2010.
[23]  M. Salonen, K. Reid, and M. Maze, “Synergistic interaction between α2-adrenergic agonists and benzodiazepines in rats,” Anesthesiology, vol. 76, no. 6, pp. 1004–1011, 1992.
[24]  R. A. Veselis, R. A. Reinsel, V. A. Feshchenko, and R. Johnson, “Information loss over time defines the memory defect of propofol: a comparative response with thiopental and dexmedetomidine,” Anesthesiology, vol. 101, no. 4, pp. 831–841, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413