全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2015 

Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies

DOI: 10.1371/journal.pmed.1001878

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Current dietary guidelines recommend eating a variety of fruits and vegetables. However, based on nutrient composition, some particular fruits and vegetables may be more or less beneficial for maintaining or achieving a healthy weight. We hypothesized that greater consumption of fruits and vegetables with a higher fiber content or lower glycemic load would be more strongly associated with a healthy weight. Methods and Findings We examined the association between change in intake of specific fruits and vegetables and change in weight in three large, prospective cohorts of 133,468 United States men and women. From 1986 to 2010, these associations were examined within multiple 4-y time intervals, adjusting for simultaneous changes in other lifestyle factors, including other aspects of diet, smoking status, and physical activity. Results were combined using a random effects meta-analysis. Increased intake of fruits was inversely associated with 4-y weight change: total fruits -0.53 lb per daily serving (95% CI -0.61, -0.44), berries -1.11 lb (95% CI -1.45, -0.78), and apples/pears -1.24 lb (95% CI -1.62, -0.86). Increased intake of several vegetables was also inversely associated with weight change: total vegetables -0.25 lb per daily serving (95% CI -0.35, -0.14), tofu/soy -2.47 lb (95% CI, -3.09 to -1.85 lb) and cauliflower -1.37 lb (95% CI -2.27, -0.47). On the other hand, increased intake of starchy vegetables, including corn, peas, and potatoes, was associated with weight gain. Vegetables having both higher fiber and lower glycemic load were more strongly inversely associated with weight change compared with lower-fiber, higher-glycemic-load vegetables (p < 0.0001). Despite the measurement of key confounders in our analyses, the potential for residual confounding cannot be ruled out, and although our food frequency questionnaire specified portion size, the assessment of diet using any method will have measurement error. Conclusions Increased consumption of fruits and non-starchy vegetables is inversely associated with weight change, with important differences by type suggesting that other characteristics of these foods influence the magnitude of their association with weight change.

References

[1]  U.S. Department of Agriculture and U.S. Department of Health and Human Services (2010) Dietary Guidelines for Americans, 2010. 7 ed. Washington, D.C.: Government Printing Office.
[2]  Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364: 2392–2404. doi: 10.1056/NEJMoa1014296. pmid:21696306
[3]  Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59: 129–139. pmid:11396693 doi: 10.1111/j.1753-4887.2001.tb07001.x
[4]  Porikos K, Hagamen S. Is fiber satiating? Effects of a high fiber preload on subsequent food intake of normal-weight and obese young men. Appetite. 1986;7: 153–162. pmid:3017204 doi: 10.1016/s0195-6663(86)80015-0
[5]  Alfieri MA, Pomerleau J, Grace DM, Anderson L. Fiber intake of normal weight, moderately obese and severely obese subjects. Obes Res. 1995;3: 541–547. pmid:8653530 doi: 10.1002/j.1550-8528.1995.tb00188.x
[6]  Liu S, Willett WC, Manson JE, Hu FB, Rosner B, et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78: 920–927. pmid:14594777
[7]  Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR Jr., et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr. 2004;80: 1237–1245. pmid:15531671
[8]  Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287: 2414–2423. pmid:11988062 doi: 10.1001/jama.287.18.2414
[9]  Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307: 2627–2634. doi: 10.1001/jama.2012.6607. pmid:22735432
[10]  Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95: 925–933. doi: 10.3945/ajcn.111.028894. pmid:22357723
[11]  Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes. 2014;5: 3–17. doi: 10.3920/BM2012.0065. pmid:23886976
[12]  Muraki I, Imamura F, Manson JE, Hu FB, Willett WC, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347: f5001. doi: 10.1136/bmj.f5001. pmid:23990623
[13]  Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Hennekens CH, et al. Dietary fat and the risk of breast cancer. N Engl J Med. 1987;316: 22–28. pmid:3785347 doi: 10.1056/nejm198701013160105
[14]  Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338: 464–468. pmid:1678444 doi: 10.1016/0140-6736(91)90542-w
[15]  Solomon CG, Willett WC, Carey VJ, Rich-Edwards J, Hunter DJ, et al. A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA. 1997;278: 1078–1083. pmid:9315766 doi: 10.1001/jama.278.13.1078
[16]  Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, et al. Validity of self-reported waist and hip circumferences in men and women. Epidemiology. 1990;1: 466–473. pmid:2090285 doi: 10.1097/00001648-199011000-00009
[17]  Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, et al. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135: 1114–1126; discussion 1127–1136. pmid:1632423
[18]  Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Colditz GA, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol. 1989;18: 858–867. pmid:2621022 doi: 10.1093/ije/18.4.858
[19]  Feskanich D, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93: 790–796. pmid:8320406 doi: 10.1016/0002-8223(93)91754-e
[20]  Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol. 1994;23: 991–999. doi: 10.1093/ije/23.5.991
[21]  Ludwig DS. Dietary glycemic index and obesity. J Nutr. 2000;130: 280S–283S. pmid:10721888
[22]  Ledoux TA, Hingle MD, Baranowski T. Relationship of fruit and vegetable intake with adiposity: a systematic review. Obes Rev. 2011;12: e143–150. doi: 10.1111/j.1467-789X.2010.00786.x. pmid:20633234
[23]  Vergnaud AC, Norat T, Romaguera D, Mouw T, May AM, et al. Fruit and vegetable consumption and prospective weight change in participants of the European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home, and Obesity study. Am J Clin Nutr. 2012;95: 184–193. doi: 10.3945/ajcn.111.019968. pmid:22170373
[24]  Aljadani HM, Patterson A, Sibbritt D, Hutchesson MJ, Jensen ME, et al. Diet quality, measured by fruit and vegetable intake, predicts weight change in young women. J Obes. 2013;2013: 525161. doi: 10.1155/2013/525161. pmid:24062946
[25]  Barone Gibbs B, Kinzel LS, Pettee Gabriel K, Chang YF, Kuller LH. Short- and long-term eating habit modification predicts weight change in overweight, postmenopausal women: results from the WOMAN study. J Acad Nutr Diet. 2012;112: 1347–1355, 1355 e1341–1342. doi: 10.1016/j.jand.2012.06.012. pmid:22939439
[26]  He K, Hu FB, Colditz GA, Manson JE, Willett WC, et al. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int J Obes Relat Metab Disord. 2004;28: 1569–1574. pmid:15467774 doi: 10.1038/sj.ijo.0802795
[27]  Drapeau V, Despres JP, Bouchard C, Allard L, Fournier G, et al. Modifications in food-group consumption are related to long-term body-weight changes. Am J Clin Nutr. 2004;80: 29–37. pmid:15213024
[28]  Svendesn M, Blomhoff R, Holme I, Tonstad S. The effect of an increased intake of vegetables and fruit on weight loss, blood pressure, and antioxidant defense in subjects with sleep related breathing disorders. Eur J Clin Nutr. 2007;61: 1301–1311. pmid:17268408 doi: 10.1038/sj.ejcn.1602652
[29]  John JH, Ziebland S, Yudkin P, Roe LS, Neil HA. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet. 2002;359: 1969–1974. pmid:12076551 doi: 10.1016/s0140-6736(02)98858-6
[30]  Whybrow S, Harrison CL, Mayer C, James Stubbs R. Effects of added fruits and vegetables on dietary intakes and body weight in Scottish adults. Br J Nutr. 2006;95: 496–503. pmid:16512935 doi: 10.1079/bjn20051489
[31]  de Oliveira MC, Sichieri R, Sanchez Moura A. Weight loss associated with a daily intake of three apples or three pears among overweight women. Nutrition. 2003;19: 253–256. pmid:12620529 doi: 10.1016/s0899-9007(02)00850-x
[32]  Dow CA, Going SB, Chow HH, Patil BS, Thomson CA. The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism. 2012;61: 1026–1035. doi: 10.1016/j.metabol.2011.12.004. pmid:22304836
[33]  Anderson AS, Cox DN, McKellar S, Reynolds J, Lean ME, et al. Take Five, a nutrition education intervention to increase fruit and vegetable intakes: impact on attitudes towards dietary change. Br J Nutr. 1998;80: 133–140. pmid:9828754 doi: 10.1017/s0007114598001032
[34]  Kimmons J, Gillespie C, Seymour J, Serdula M, Blanck HM. Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med. 2009;11: 26. pmid:19295947
[35]  U.S. Department of Agriculture and U.S. Department of Health and Human Services (2010) Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010.
[36]  Blanck HM, Gillespie C, Kimmons JE, Seymour JD, Serdula MK. Trends in fruit and vegetable consumption among U.S. men and women, 1994–2005. Prev Chronic Dis. 2008;5: A35. pmid:18341771
[37]  Ford ES, Li C, Zhao G, Pearson WS, Tsai J, et al. Trends in low-risk lifestyle factors among adults in the United States: findings from the Behavioral Risk Factor Surveillance System 1996–2007. Prev Med. 2010;51: 403–407. doi: 10.1016/j.ypmed.2010.08.002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413