全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2015 

Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal

DOI: 10.1371/journal.pmed.1001880

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. Methods and Findings We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974–1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988–1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study

References

[1]  WHO. Global Tuberculosis Report. 2014.
[2]  Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect Dis. 2009;9: 19–30. doi: 10.1016/S1473-3099(08)70260-3. pmid:18990610
[3]  WHO. Multidrug-resistant tuberculosis (MDR-TB) Update. 2013.
[4]  Department of Health Province of KwaZulu-Natal Annual Report 2012/2013: Part B Performance Information. 2013.
[5]  Wallengren K, Scano F, Nunn P, Margot B, Buthelezi SSS, Williams B, et al. Drug-Resistant tuberculosis, KwaZulu-Natal, South Africa, 2001–2007. Emerg Infect Dis. 2011;17: 1913–6. doi: 10.3201/eid1710.100952. pmid:22000370
[6]  UNAIDS. The Gap Report: HIV estimates with uncertainty bounds 1990–2013. 2014.
[7]  Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368: 1575–80. pmid:17084757 doi: 10.1016/s0140-6736(06)69573-1
[8]  Pillay M, Sturm AW. Evolution of the extensively drug-resistant F15/LAM4/KZN strain of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. Clin Infect Dis. 2007;45: 1409–14. pmid:17990220 doi: 10.1086/522987
[9]  Gandhi NR, Weissman D, Moodley P, Ramathal M, Elson I, Kreiswirth BN, et al. Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis. 2013;207: 9–17. doi: 10.1093/infdis/jis631. pmid:23166374
[10]  Gandhi NR, Brust JCM, Moodley P, Weissman D, Heo M, Ning Y, et al. Minimal Diversity of Drug-Resistant Mycobacterium tuberculosis Strains, South Africa. Emerg Infect Dis. 2014;20: 394–401. doi: 10.3201/eid2003.131083
[11]  Chihota VN, Müller B, Mlambo CK, Pillay M, Tait M, Streicher EM, et al. Population structure of multi- and extensively drug-resistant Mycobacterium tuberculosis strains in South Africa. J Clin Microbiol. 2012;50: 995–1002. doi: 10.1128/JCM.05832-11. pmid:22170931
[12]  Moodley P, Shah NS, Tayob N, Connolly C, Zetola N, Gandhi N, et al. Spread of extensively drug-resistant tuberculosis in KwaZulu-Natal province, South Africa. PLoS One. 2011;6: e17513. doi: 10.1371/journal.pone.0017513. pmid:21655324
[13]  Tuberculosis MDR/XDR: The Msinga Experience 2005–2009. 2009.
[14]  Müller B, Chihota VN, Pillay M, Klopper M, Streicher EM, Coetzee G, et al. Programmatically selected multidrug-resistant strains drive the emergence of extensively drug-resistant tuberculosis in South Africa. PLoS One. 2013;8: e70919. doi: 10.1371/journal.pone.0070919. pmid:24058399
[15]  Cohan FM, King EC, Zawadzki P. Amelioration of the Deleterious Pleiotropic Effects of an Adaptive Mutation in Bacillus subtilis. Evolution (N Y). 1994;48: 81–95. doi: 10.2307/2410005
[16]  Schrag SJ, Perrot V. Reducing antibiotic resistance. Nature. 1996. pp. 120–121. pmid:8700201 doi: 10.1038/381120b0
[17]  Reynolds MG. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics. 2000;156: 1471–1481. pmid:11102350
[18]  Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996;272: 1641–3. pmid:8658136 doi: 10.1126/science.272.5268.1641
[19]  Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. Nature Publishing Group; 2012;44: 106–10. doi: 10.1038/ng.1038
[20]  Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet. Nature Publishing Group; 2014;46: 279–86. doi: 10.1038/ng.2878
[21]  Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet. Nature Publishing Group; 2013;45: 1183–9. doi: 10.1038/ng.2747
[22]  Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. Nature Publishing Group; 2013;45: 1255–60. doi: 10.1038/ng.2735
[23]  Merker M, Blin C, Mona S, Duforet-frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47(3):242–249. doi: 10.1038/ng.3195. pmid:25599400
[24]  Ioerger TR, Koo S, No E-G, Chen X, Larsen MH, Jacobs WR, et al. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS One. 2009;4: e7778. doi: 10.1371/journal.pone.0007778. pmid:19890396
[25]  Koenig R. Tuberculosis. Few mutations divide some drug-resistant TB strains. Science. 2007;318: 901–2. pmid:17991835 doi: 10.1126/science.318.5852.901a
[26]  Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29: 1969–73. doi: 10.1093/molbev/mss075. pmid:22367748
[27]  WHO Updated interim critical concentration for first-line and second-line DST [Internet].
[28]  Bantubani N, Kabera G, Connolly C, Rustomjee R, Reddy T, Cohen T, et al. High rates of potentially infectious tuberculosis and multidrug-resistant tuberculosis (MDR-TB) among hospital inpatients in KwaZulu Natal, South Africa indicate risk of nosocomial transmission. PLoS One. 2014;9: e90868. doi: 10.1371/journal.pone.0090868. pmid:24625669
[29]  O’Donnell MR, Wolf A, Werner L, Horsburgh CR, Padayatchi N. Adherence in the treatment of patients with extensively drug-resistant tuberculosis and HIV in South Africa: A prospective cohort study. J Acquir Immune Defic Syndr. 2014;67(1):22–29. doi: 10.1097/QAI.0000000000000221. pmid:24872138
[30]  O’Donnell MR, Pym A, Jain P, Munsamy V, Wolf A, Karim F, et al. A novel reporter phage to detect tuberculosis and rifampicin resistance in an HIV endemic population. J Clin Microbiol. 2015;53:2188–2194. doi: 10.1128/JCM.03530-14. pmid:25926493
[31]  Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WR. Genetic Manipulation of Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;Chapter 10: Unit 10A.2. doi: 10.1002/9780471729259.mc10a02s6. pmid:18770603
[32]  Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon?: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS One. 2014;9: e112963. doi: 10.1371/journal.pone.0112963. pmid:25409509
[33]  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–60. doi: 10.1093/bioinformatics/btp324. pmid:19451168
[34]  Picard [Internet].
[35]  Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–90. pmid:16928733 doi: 10.1093/bioinformatics/btl446
[36]  Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103: 2869–73. pmid:16477032 doi: 10.1073/pnas.0511240103
[37]  Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, et al. SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12: 755–66. doi: 10.1016/j.meegid.2012.02.004. pmid:22365971
[38]  Ester M, Kriegel H-P, J?rg S, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Evangelos Simoudis; Jiawei Han; UM Fayyad, editor. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press; 1996. pp. 226–231.
[39]  Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. Elsevier Ltd; 2013;13: 137–46. doi: 10.1016/s1473-3099(12)70277-3
[40]  Walker TM, Lalor MK, Broda A, Saldana Ortega L, Morgan M, Parker L, et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–12, with whole pathogen genome sequences: an observational study. Lancet Respir Med. 2014;2: 285–92. doi: 10.1016/S2213-2600(14)70027-X. pmid:24717625
[41]  Guerra-Assun??o J, Crampin A, Houben R, Mzembe T, Mallard K, Coll F, et al. Large scale population-based whole genome sequencing of Mycobacterium tuberculosis provides insights into transmission in a high prevalence area. Elife. 2015;4: 1–17. doi: 10.7554/elife.05166
[42]  Bonnet E, Van de Peer Y. zt: a software tool for simple and partial Mantel tests. J Stat Softw. 2002;7: 1–12. doi: 10.18637/jss.v007.i10
[43]  Inman JW. Navigation and nautical astronomy for use of British seamen. 3rd ed. London: C. and J. Rivington; 1835. pmid:20895631
[44]  Swofford DL. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1 Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois. 1991.
[45]  Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45: 784–90. doi: 10.1038/ng.2656. pmid:23749189
[46]  Bryant JM, Schürch AC, van Deutekom H, Harris SR, de Beer JL, de Jager V, et al. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect Dis. 2013;13: 110. doi: 10.1186/1471-2334-13-110. pmid:23446317
[47]  Roetzer A, Diel R, Kohl T a., Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. Neyrolles O, editor. PLoS Med. 2013;10: e1001387. doi: 10.1371/journal.pmed.1001387. pmid:23424287
[48]  Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet. 2011;43: 482–6. doi: 10.1038/ng.811. pmid:21516081
[49]  Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007;7: 328–37. pmid:17448936 doi: 10.1016/s1473-3099(07)70108-1
[50]  Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008;6: e311. doi: 10.1371/journal.pbio.0060311. pmid:19090620
[51]  Coll F, McNerney R, Guerra-Assun??o JA, Glynn JR, Perdig?o J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5: 4812. doi: 10.1038/ncomms5812. pmid:25176035
[52]  South Africa KwaZulu-Natal location map [Internet].
[53]  Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X. Global tuberculosis drug development pipeline: the need and the reality. Lancet. Elsevier Ltd; 2010;375: 2100–9. doi: 10.1016/s0140-6736(10)60359-9
[54]  Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Mol Microbiol. 2014;91: 1106–1119. doi: 10.1111/mmi.12520. pmid:24417450
[55]  De Vos M, Müller B, Borrell S, Black P a., Van Helden PD, Warren RM, et al. Putative compensatory mutations in the rpoc gene of rifampin-resistant mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother. 2013;57: 827–832. doi: 10.1128/AAC.01541-12. pmid:23208709
[56]  Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. Nature Publishing Group; 2013;45: 1190–7. doi: 10.1038/ng.2743
[57]  Iseman MD. Tuberculosis therapy: past, present and future. Eur Respir J. 2002;20: 87S–94s. doi: 10.1183/09031936.02.00309102
[58]  McEvoy CRE, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, et al. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One. 2012;7: e30593. doi: 10.1371/journal.pone.0030593. pmid:22496726
[59]  Coscolla M, Barry PM, Oeltmann JE, Koshinsky H, Shaw T, Cilnis M, et al. Genomic Epidemiology of Multidrug-resistant Mycobacterium tuberculosis During Transcontinental Spread. J Infect Dis. 2015; 1–9. doi: 10.1093/infdis/jiv025
[60]  Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363: 1005–15. doi: 10.1056/NEJMoa0907847. pmid:20825313
[61]  Cattamanchi A, Dantes RB, Metcalfe JZ, Jarlsberg LG, Grinsdale J, Kawamura LM, et al. Clinical characteristics and treatment outcomes of patients with isoniazid-monoresistant tuberculosis. Clin Infect Dis. 2009;48: 179–85. doi: 10.1086/595689. pmid:19086909
[62]  Denkinger CM, Pai M, Dowdy DW. Do we need to detect isoniazid resistance in addition to rifampicin resistance in diagnostic tests for tuberculosis? PLoS One. 2014;9: e84197. doi: 10.1371/journal.pone.0084197. pmid:24404155
[63]  Dlamini-Mvelase NR, Werner L, Phili R, Cele LP, Mlisana KP. Effects of introducing Xpert MTB/RIF test on multi-drug resistant tuberculosis diagnosis in KwaZulu-Natal South Africa. BMC Infect Dis. 2014;14: 442. doi: 10.1186/1471-2334-14-442. pmid:25129689
[64]  Mills HL, Cohen T, Colijn C. Community-wide isoniazid preventive therapy drives drug-resistant tuberculosis: a model-based analysis. Sci Transl Med. 2013;5: 180ra49. doi: 10.1126/scitranslmed.3005260. pmid:23576815
[65]  Cohen T, Lipsitch M, Walensky RP, Murray M. Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad Sci U S A. 2006;103: 7042–7. pmid:16632605 doi: 10.1073/pnas.0600349103
[66]  Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P, et al. A Trial of Mass Isoniazid Preventive Therapy for Tuberculosis Control. N Engl J Med. 2014;370: 301–310. doi: 10.1056/NEJMoa1214289. pmid:24450889
[67]  Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun. Nature Publishing Group; 2015;6: 7119. doi: 10.1038/ncomms8119
[68]  Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. Nature Publishing Group; 2015;47: 242–249. doi: 10.1038/ng.3195

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133