Paperboard is an environment-friendly multi-layer material widely used for packaging applications. However, for food packaging paperboard lacks essential barrier properties towards oxygen and water vapor. Conventional solutions to enhance these barrier properties (e.g. paperboard film coating with synthetic polymers) require special manufacturing facilities and difficult the end-of-life disposal and recycling of the paperboard. Paperboard coating with silica-based formulations is an eco-friendly alternative hereby disclosed. Silica-nanocoatings were prepared by sol-gel synthesis, with or without the addition of Zn(2)-Al-NO3 layered double hydroxides (LDHs), and applied on the surface (ca 2 g/m2) of industrial paperboard samples by a roll-to-roll technique. The physicochemical features of silica-nanocoatings were studied by FTIR-ATR, SEM/EDS, XRD analysis and surface energy measurements. The barrier properties of uncoated and silica-coated paperboard were accessed by water vapor transmission rate (WVTR) and oxygen permeability (Jo2) measurements. The best barrier results were obtained for paperboard coated with a mixture of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES), with and without the incorporation of LDHs.
References
[1]
Hirvikorpi, T., Vähä-Nissi, M., Harlin, A. and Karppinen, M. (2010) Comparison of Some Coating Techniques to Fabricate Barrier Layers on Packaging Materials. Thin Solid Films, 518, 5463-5466.
http://dx.doi.org/10.1016/j.tsf.2010.04.018
[2]
Samyn, P. (2013) Wetting and Hydrophobic Modification of Cellulose Surfaces for Paper Applications. Journal of Materials Science, 48, 6455-6498. http://dx.doi.org/10.1007/s10853-013-7519-y
[3]
Rahman, M.S. (2007) Handbook of Food Preservation. 2nd Edition, CRC Press, 479-480.
http://dx.doi.org/10.1201/9781420017373
[4]
Siracusa, V. (2012) Food Packaging Permeability Behaviour: A Report. International Journal of Polymer Science, 2012, 1-11. http://dx.doi.org/10.1155/2012/302029
[5]
Han, J., Salmieri, S., Le Tien, C. and Lacroix, M. (2010) Improvement of Water Barrier Property of Paperboard by Coating Application with Biodegradable Polymers. Journal of agricultural and food chemistry, 58, 3125-3131.
http://dx.doi.org/10.1021/jf904443n
[6]
Stepien, M., et al. (2012) Surface Chemical Characterization of Nanoparticle Coated Paperboard. Applied Surface Science, 258, 3119-3125. http://dx.doi.org/10.1016/j.apsusc.2011.11.048
[7]
Khwaldia, K., Arab-Tehrany, E. and Desobry, S. (2010) Biopolymer Coatings on Paper Packaging Materials. Comprehensive Reviews in Food Science and Food Safety, 9, 82-91. http://dx.doi.org/10.1111/j.1541-4337.2009.00095.x
[8]
Farris, S., Unalan, I.U., Introzzi, L., Fuentes-Alventosa, J.M. and Cozzolino, C.A. (2014) Pullulan-Based Films and Coatings for Food Packaging: Present Applications, Emerging Opportunities, and Future Challenges. Journal of Applied Polymer Science, 131, 1-12. http://dx.doi.org/10.1002/app.40539
[9]
Schmid, M., et al. (2014) Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification. Polymers, 6, 2764-2783. http://dx.doi.org/10.3390/polym6112764
[10]
Vartiainen, J., Vähä-nissi, M. and Harlin, A. (2014) Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. Materials Sciences and Applications, 5, 708-718.
http://dx.doi.org/10.4236/msa.2014.510072
[11]
Othman, S.H. (2014) Bio-Nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-Sized Filler. Agriculture and Agricultural Science Procedia, 2, 296-303.
http://dx.doi.org/10.1016/j.aaspro.2014.11.042
[12]
Bang, G. and Kim, S.W. (2012) Biodegradable Poly(lactic acid)-Based Hybrid Coating Materials for Food Packaging Films with Gas Barrier Properties. Journal of Industrial and Engineering Chemistry, 18, 1063-1068.
http://dx.doi.org/10.1016/j.jiec.2011.12.004
[13]
Rahman, I.A. and Padavettan, V. (2012) Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. Journal of Nanomaterials, 2012, 1-15. http://dx.doi.org/10.1155/2012/132424
[14]
Pandey, S. and Mishra, S.B. (2011) Sol-Gel Derived Organic-Inorganic Hybrid Materials: Synthesis, Characterizations and Applications. Journal of Sol-Gel Science and Technology, 59, 73-94. http://dx.doi.org/10.1007/s10971-011-2465-0
[15]
Wang, S.X., Mahlberg, R., Nikkola, J., et al. (2011) Surface Characteristics and Wetting Properties of Sol-Gel Coated Base Paper. Surface and Interface Analysis, 44, 539-547. http://dx.doi.org/10.1002/sia.3841
[16]
Wang, S.X., Jämsä, S., Mahlberg, R., et al. (2014) Treatments of Paper Surfaces with Sol-Gel Coatings for Laminated Plywood. Applied Surface Science, 288, 295-303. http://dx.doi.org/10.1016/j.apsusc.2013.10.024
[17]
Sequeira, S., Evtuguin, D.V., Portugal, I. and Esculcas, A.P. (2007) Synthesis and Characterisation of Cellulose/Silica Hybrids Obtained by Heteropoly Acid Catalysed Sol-Gel Process. Materials Science and Engineering: C, 27, 172-179.
http://dx.doi.org/10.1016/j.msec.2006.04.007
[18]
Portugal, I., Dias, V.M., Duarte, R.F. and Evtuguin, D.V. (2010) Hydration of Cellulose/Silica Hybrids Assessed by Sorption Isotherms. Journal of Physical Chemistry B, 114, 4047-4055. http://dx.doi.org/10.1021/jp911270y
[19]
Latthe, S.S., Imai, H., Ganesan, V., Kappenstein, C. and Venkateswara Rao, A. (2009) Optically Transparent Superhydrophobic TEOS-Derived Silica Films by Surface Silylation Method. Journal of Sol-Gel Science and Technology, 53, 208-215. http://dx.doi.org/10.1007/s10971-009-2079-y
[20]
Purcar, V., Stamatin, I., Cinteza, O., et al. (2012) Fabrication of Hydrophobic and Antireflective Coatings Based on Hybrid Silica Films by Sol-Gel Process. Surface and Coatings Technology, 206, 4449-4454.
http://dx.doi.org/10.1016/j.surfcoat.2012.04.094
Mah, S.K. and Chung, I.J. (1995) Effects of Dimethyldiethoxysilane Addition on Tetraethylorthosilicate Sol-Gel Process. Journal of Non-Crystalline Solids, 183, 252-259. http://dx.doi.org/10.1016/0022-3093(94)00631-8
[23]
Zhang, X., Wu, W., Wang, J. and Tian, X. (2008) Direct Synthesis and Characterization of Highly Ordered Functional Mesoporous Silica Thin Films with High Amino-Groups Content. Applied Surface Science, 254, 2893-2899.
http://dx.doi.org/10.1016/j.apsusc.2007.10.022
[24]
Gamelas, J.A.F., Evtyugina, M.G., Portugal, I. and Evtuguin, D.V. (2012) New Polyoxometalate-Functionalized Cellulosic Fibre/Silica Hybrids for Environmental Applications. RSC Advances, 2, 831-839.
http://dx.doi.org/10.1039/C1RA00371B
[25]
Gamelas, J.A.F., Evtuguin, D.V. and Esculcas, A.P. (2007) Transition Metal Substituted Polyoxometalates Supported on Amine-Functionalized Silica. Transition Metal Chemistry, 32, 1061-1067.
http://dx.doi.org/10.1007/s11243-007-0277-4
[26]
Newman, S.P. and Jones, W. (1998) Synthesis, Characterization and Applications of Layered Double Hydroxides Containing Organic Guests. New Journal of Chemistry, 22, 105-115. http://dx.doi.org/10.1039/a708319j
[27]
Tedim, J., Kuznetsova, A., Salak, A.N., et al. (2012) Zn-Al Layered Double Hydroxides as Chloride Nanotraps in Active Protective Coatings. Corrosion Science, 55, 1-4. http://dx.doi.org/10.1016/j.corsci.2011.10.003
[28]
Uysal, U.I., Cerri, G., Marcuzzo, E., Cozzolino, C.A. and Farris, S. (2014) Nanocomposite Films and Coatings Using Inorganic Nanobuilding Blocks (NBB): Current Applications and Future Opportunities in the Food Packaging Sector. RSC Advances, 4, 29393-29428. http://dx.doi.org/10.1039/C4RA01778A
[29]
Azeredo, H., Mattoso, L. and McHugh, T. (2011) Nanocomposites in Food Packaging—A Review Advances. In: Reddy, B., Ed., Diverse Industrial Applications of Nanocomposites, InTech, Rijeka, 57-78.
Coiai, S., Scatto, M., Conzatti, L., et al. (2011) Optimization of Organo-Layered Double Hydroxide Dispersion in LDPE-Based Nanocomposites. Polymers for Advanced Technologies, 22, 2285-2294.
http://dx.doi.org/10.1002/pat.1759
[32]
Owens, D.K. and Wendt, R.C. (1969) Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science, 13, 1741-1747. http://dx.doi.org/10.1002/app.1969.070130815
[33]
Figueiredo, A.B., Evtuguin, D.V., Monteiro, J., et al. (2011) Structure-Surface Property Relationships of Kraft Papers: Implication on Impregnation with Phenol-Formaldehyde Resin. Industrial Engineering Chemistry Research, 50, 2883-2890. http://dx.doi.org/10.1021/ie101912h
[34]
Janssen, D., De Palma, R., Verlaak, S., Heremans, P. and Dehaen, W. (2006) Static Solvent Contact Angle Measurements, Surface Free Energy and Wettability Determination of Various Self-Assembled Monolayers on Silicon Dioxide. Thin Solid Films, 515, 1433-1438. http://dx.doi.org/10.1016/j.tsf.2006.04.006
[35]
ASTM E 95-96 (1995) Standard Test Methods for Water Vapor Transmission of Materials (E96-E95). Annual Books of ASTM Standards, 552, 785-792.
[36]
Kovalevsky, A.V., Yaremchenko, A.A., Kolotygin, V.A., et al. (2011) Processing and Oxygen Permeation Studies of Asymmetric Multilayer Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membranes. Journal of Membrane Science, 380, 68-80.
http://dx.doi.org/10.1016/j.memsci.2011.06.034
[37]
Goel, A., Tulyaganov, D.U., Kharton, V.V., et al. (2007) Effect of BaO Addition on Crystallization, Microstructure, and Properties of Diopside-Ca-Tschermak Clinopyroxene-Based Glass-Ceramics. Journal of the American Ceramic Society, 90, 2236-2244. http://dx.doi.org/10.1111/j.1551-2916.2007.01743.x
[38]
Yaremchenko, A.A., Kharton, V.V., Avdeev, M., Shaula, A.L. and Marques, F.M.B. (2007) Oxygen Permeability, Thermal Expansion and Stability of SrCo0.8Fe0.2O3-δ-SrAl2O4 Composites. Solid State Ionics, 178, 1205-1217.
http://dx.doi.org/10.1016/j.ssi.2007.05.016
[39]
Miller, F.A. and Wilkins, C.H. (1952) Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Analytical Chemistry, 24, 1253-1294. http://dx.doi.org/10.1021/ac60068a007
[40]
Nalwa, H.S. (2003) Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites: Hybrid Materials. American Scientific Publishers, Valencia, 280-285.
[41]
Hsiao, V.K.S., Waldeisen, J.R., Zheng, Y.B., et al. (2007) Aminopropyltriethoxysilane (APTES)-Functionalized Nanoporous Polymeric Gratings: Fabrication and Application in Biosensing. Journal of Materials Chemistry, 17, 4896-4901. http://dx.doi.org/10.1039/b711200a
[42]
Tedim, J., Poznyak, S.K., Kuznetsova, A., et al. (2010) Enhancement of Active Corrosion Protection via Combination of Inhibitor-Loaded Nanocontainers. ACS Applied Materials & Interfaces, 2, 1528-1535.
http://dx.doi.org/10.1021/am100174t
[43]
Wu, Z., Xiang, H., Kim, T., Chun, M.S. and Lee, K. (2006) Surface Properties of Submicrometer Silica Spheres Modified with Aminopropyltriethoxysilane and Phenyltriethoxysilane. Journal of Colloid and Interface Science, 304, 119-124. http://dx.doi.org/10.1016/j.jcis.2006.08.055
[44]
Butt, H., Graf, K. and Kappl, M. (2003) Physics and Chemistry of Interfaces. Wiley-VCH, Weinheim.
[45]
Yuan, Y. and Lee, T.R. (2013) Contact Angle and Wetting Properties. In: Bracco, G. and Holst, B., Eds., Surface Science Techniques Springer Series, Surface Sciences, Volume 51, Springer Berlin Heidelberg, Berlin and Heidelberg, 3-34. http://dx.doi.org/10.1007/978-3-642-34243-1
[46]
Verplanck, N., Coffinier, Y., Thomy, V. and Boukherroub, R. (2007) Wettability Switching Techniques on Superhydrophobic Surfaces. Nanoscale Research Letters, 2, 577-596. http://dx.doi.org/10.1007/s11671-007-9102-4.
[47]
Chen, H., Zhang, F., Fu, S. and Duan, X. (2006) In Situ Microstructure Control of Oriented Layered Double Hydroxide Monolayer Films with Curved Hexagonal Crystals as Superhydrophobic Materials. Advanced Materials, 18, 3089-3093. http://dx.doi.org/10.1002/adma.200600615
[48]
Lee, S., Oh, K.K., Park, S., Kim, J.-S. and Kim, H. (2010) Scratch Resistance and Oxygen Barrier Properties of Acrylate-Based Hybrid Coatings on Polycarbonate Substrate. Korean Journal of Chemical Engineering, 26, 1550-1555.
http://dx.doi.org/10.1007/s11814-009-0263-y