全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2015 

MODIS地表温度产品在青藏高原连续多年冻土区的适用性分析

DOI: 10.7522/j.issn.1000-0240.2015.0034, PP. 308-317

Keywords: 青藏高原,地表温度,MODIS,向上/向下长波辐射,Landsat,TM/ETM+

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用自动气象站观测的长波辐射计算得到的地表温度对MODIS地表温度(LST)产品在青藏高原中部连续多年冻土区的精度进行验证,并利用具有较高空间分辨率的Landsat5TM和Landsat7ETM+反演的地表温度与MODISLST产品进行了对比分析.结果表明白天MODISLST产品的平均绝对误差(MAE)和均方根误差(RMSE)分别约为3.42~4.41℃和4.41~5.29℃,夜晚MODIS产品MAE和RMSE分别为2.15~2.90℃和3.05~3.78℃,精度高于白天;MODISLST与TM、ETM+反演的地表温度一致性较好,相关系数分别达到0.85和0.95.说明MODISLST产品在连续多年冻土区的适用性较高,是研究多年冻土地表热状况的一个非常好的数据源.而且,不同空间尺度的遥感数据之间一致性较好,可考虑将多源遥感数据应用于多年冻土热状况监测研究.

References

[1]  Sorkhoh N A, Ghannoum M A, Ibrahim A S, et al. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait[J]. Environmental Pollution, 1990, 65(1): 1-17.
[2]  Deppe U, Richnow H, Michaelis W, et al. Degradation of crude oil by an arctic microbial consortium[J]. Extremophiles, 2005, 9(6): 461-470.
[3]  Stocker T F, Qin Dahe, Plattner G K, et al. IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge,UK: Cambridge University Press,2013.
[4]  Coulon F D R, Mckew B A, Osborn A M, et al. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters[J]. Environmental Microbiology, 2007, 9(1): 177-186.
[5]  Liu Xiaodong, Cheng Zhigang, Yan Libin, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
[6]  Jeffreys A G, Hak K M, Steffan R J, et al. Growth, survival and characterization of cspA in Salmonella enteritidis following cold shock[J]. Current Microbiology, 1998, 36(1): 29-35.
[7]  Song Ci, Pei Tao, Zhou Chenghu. Research progresses of surface temperature characteristic change over Tibetan Plateau since 1960[J]. Progress in Geography, 2012, 31(11): 1503-1509. [宋辞, 裴韬, 周成虎. 1960年以来青藏高原气温变化研究进展[J]. 地理科学进展, 2012, 31(11): 1503-1509.]
[8]  Wang Pengling, Tang Guoli, Cao Lijuan, et al. Surface air temperature variability and its relationship with altitude & latitude over the Tibetan Plateau in 1981-2010[J]. Advances in Climate Change Research, 2012, 8(5): 313-319. [王朋岭, 唐国利, 曹丽娟, 等. 1981-2010年青藏高原地区气温变化与高程及纬度的关系[J]. 气候变化研究进展, 2012, 8(5): 313-319.]
[9]  Yakimov M M, Gentile G, Bruni V, et al. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria[J]. FEMS Microbiology Ecology, 2004, 49(3): 419-432.
[10]  Huang Lei, Li Dan, Xie Yujuan, et al. Identification and optimization of culture conditions for a low-temperature hydrocarbons-degrading strain treating pollution of sea water[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2007, 40(1): 99-104. [黄磊, 李丹, 谢玉娟, 等. 低温解烃菌T7-2分类鉴定及治理海洋石油污染的条件优化[J]. 南开大学学报(自然科学版), 2007, 40(1): 99-104.]
[11]  Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China (Series D: Earth Sciences), 2010, 53(1): 150-158. [吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1570-1578.]
[12]  Wu Qingbai, Zhang Tingjun. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113(D13). doi:10.1029/2007JD009539.
[13]  Sokolovska I, Wattiau P, Gerin P, et al. Biodegradation of fluorene at low temperature by a psychrotrophic Sphingomonas sp. L-138[J]. Chemical Papers-Slovak Academy of Science, 2002, 56(1): 36-40.
[14]  Dutta K, Schuur E A G, Neff J C, et al. Potential carbon release from permafrost soils of Northeastern Siberia[J]. Global Change Biology, 2006, 12(12): 2336-2351.
[15]  Bej A K, Saul D, Aislabie J. Cold-tolerant alkane-degrading Rhodococcus species from Antarctica[J]. Polar Biology, 2000, 23(2): 100-105.
[16]  Sun Xiaoxin, Song Changchun, Wang Xianwei, et al. Effect of permafrost degradation on methane emission in wetlands: A review[J]. Acta Ecologica Sinica, 2011, 31(18): 5379-5386. [孙晓新, 宋长春, 王宪伟, 等. 多年冻土退化对湿地甲烷排放的影响研究进展[J]. 生态学报, 2011, 31(18): 5379-5386.]
[17]  Ruberto L A, Vazquez S, Lobalbo A, et al. Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils[J]. Antarctic Science, 2005, 17(1): 47-56.
[18]  Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle[J]. BioScience, 2008, 58(8): 701-714.
[19]  Whyte L G, Hawari J, Zhou E, et al. Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic Rhodococcussp[J]. Applied and Environmental Microbiology, 1998, 64(7): 2578-2584.
[20]  Zhao Yonghua, Zhao Lin, Yue Guangyang, et al. A study of methane oxidation rates in soils samples from swamp meadow on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1126-1132. [赵拥华, 赵林, 岳广阳, 等. 青藏高原多年冻土区沼泽草甸土壤CH4氧化速率研究[J]. 冰川冻土, 2013, 35(5): 1126-1132.]
[21]  Long Haozhi, Sun Likun, Liu Guangxiu, et al. Effect of the Qinghai-Tibet Highway on surrounding soil bacterial abundance[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 207-213. [龙昊知, 孙丽坤, 刘光琇, 等. 青藏公路对其邻近土壤细菌丰度影响的研究[J]. 冰川冻土, 2014, 36(1): 207-213.]
[22]  Zhang Yongsheng, Wu Guoxiong. Diagnostic investigations on the mechanism of the onset of Asian summer monsoon and abrupt seasonal transitions over the Northern Hemisphere part: Ⅱ the role of surface sensible heating over Tibetan Plateau and surrounding regions[J]. Acta Meteorologica, 1999, 57(1): 56-73. [张永生, 吴国雄. 关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断分析: Ⅱ 青藏高原及邻近地区地表感热加热的作用[J]. 气象学报, 1999, 57(1): 56-73.]
[23]  Shen L, Yao T, Xu B, et al. Variation of culturable bacteria along depth in the East Rongbuk ice core, Mt. Everest[J]. Geoscience Frontiers, 2012, 3(3): 327-334.
[24]  Zhao Yong, Qian Yongfu. Relationships between the surface thermal anomalies in the Tibetan Plateau and the rainfall in the Jianghuai area in summer[J]. Chinese Journal of Atmospheric Science, 2007, 31(1): 145-154. [赵勇, 钱永甫. 青藏高原地表热力异常与我国江淮地区夏季降水的关系[J]. 大气科学, 2007, 31(1): 145-154.]
[25]  Wang B, Lai Q, Cui Z, et al. A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1[J]. Environmental Microbiology, 2008, 10(8): 1948-1963.
[26]  Ma Yaoming, Liu Dongsheng, Su Zhongbo, et al. Land surface variables and vegetation variables estimated from satellite remote sensing over inhomogeneous land surface of the northern Tibetan Plateau[J]. Chinese Journal of Atmospheric Science, 2004, 28(1): 23-31. [马耀明, 刘东升, 苏中波, 等. 卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J]. 大气科学, 2004, 28(1): 23-31.]
[27]  Lu Jian, Huang Xiao, Wu Xianming, et al. Isolation, identification and characterization of ahigh-efficiency alkane-degrading bacterium xcz[J]. Soil, 2008, 40(3): 460-464. [陆健, 黄潇, 伍贤明, 等. 高效烷烃降解菌xcz的分离鉴定及降解特性[J]. 土壤, 2008, 40(3): 460-464.]
[28]  Li Xin, Cheng Guodong, Lu Ling. Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2003, 22(6): 565-573. [李新, 程国栋, 卢玲. 青藏高原气温分布的空间插值方法比较[J]. 高原气象, 2003, 22(6): 565-573.]
[29]  Shiklomanov N I, Anisimov O A, Zhang Tingjun, et al. Comparison of model-produced active layer fields: Results for northern Alaska[J]. Journal of Geophysical Research, 2007, 112(F2). doi:10.1029/2006JF000571.
[30]  Wang X, Chi C, Nie Y, et al. Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain[J]. Bioresource Technology, 2011, 102(17): 7755-7761.
[31]  Klene A E, Nelson F E, Shiklomanov N I. The N-factor in natural landscapes: Variablility of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA.[J]. Arctic, Antarctic and Alpine Research, 2001, 33(2): 140-148.
[32]  Lunardini V J. Theory of n-factors and correlation of data[C]//Proceedings of the Third International Conference on Permafrost. 1978(1): 40-46.
[33]  Zhang Lujin, Yang Qian, Chen Zhongxiang, et al. Degrading characteristics of two petroleum-degrading strains[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2010, 34(6): 849-854. [张鲁进, 杨谦, 陈中祥, 等. 两株石油降解菌的降解性能研究[J]. 南京理工大学学报(自然科学版), 2010, 34(6): 849-854.]
[34]  Lin Zhonghui, Mo Xingguo, Li Hongxuan, et al. Comparison of three spatial interpolation methods for climate varialbes in China[J]. Acta Geographica Sinica, 2002, 57(1): 47-56. [林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47-56.]
[35]  Kloos K, Munch J C, Schloter M. A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization[J]. Journal of Microbiological Methods, 2006, 66(3): 486-496.
[36]  Huang Peipei, Nan Zhuotong. Estimation of 0-cm soil temperature over the Tibetan Plateau based on the wavelet analysis and adaptive network-fuzzy inference system[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 74-83. [黄培培, 南卓铜. 基于Wavelet-ANFIS和MODIS地表温度产品的青藏高原0 cm土壤温度估算方法[J]. 冰川冻土, 2013, 35(1): 74-83.]
[37]  Wang W, Shao Z. Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes[J]. FEMS Microbiology Ecology, 2012, 80(3): 523-533.
[38]  Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(23): 2181-2187. [赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.]
[39]  Minerdi D, Zgrablic I, Sadeghi S J, et al. Identification of a novel Baeyer-Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tubercu-losis prodrug activator EtaA[J]. Microbial Biotechnology, 2012, 5(6): 700-716.
[40]  Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247. [焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247.]
[41]  Wang L, Wang W, Lai Q, et al. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean[J]. Environmental Microbiology, 2010, 12(5): 1230-1242.
[42]  Wang Zhixia, Nan Zhuotong, Zhao Lin. The applicability of MODIS land surface temperature products to simulating the permafrost distribution over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 132-143. [王之夏, 南卓铜, 赵林. MODIS地表温度产品在青藏高原冻土模拟中的适用性评价[J].冰川冻土, 2011, 33(1): 132-143.]
[43]  Lane D J. 16S/23S rRNA sequencing[M]//Stackebrandt E, Goodfellow M. Nucleic acid techniques in bacterial systematics. New York: Wiley, 1991: 115-175.
[44]  Wang Binbin, Ma Yaoming, Ma Weiqiang. Estimation of land surface temperature retrieved from EOS/MODIS in Naqu area over Tibetan Plateau[J]. Journal of Remote Sensing, 2012, 16(6): 1289-1309.
[45]  Xu Jingliang, Gu Xiangyang, Shen Biao, et al. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6[J]. Current Microbiology, 2006, 53: 72-76.
[46]  Ouyang Bin, Che Tao, Dai Liyun, et al. Estimating mean daily surface temperature over the Tibetan Plateau based on MODIS LST products[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 296-303. [欧阳斌, 车涛, 戴礼云, 等. 基于MODIS LST产品估算青藏高原地区的日平均地表温度[J]. 冰川冻土, 2012, 34(2): 296-303.]
[47]  Wang Jianning, Dong Chunming, Lai Qiliang, et al. Diversity of C16H33Cl-degrading bacteria in surface sea water of the Arctic Ocean[J]. Acta Microbiologica Sinica, 2012, 52(8): 1011-1020. [王建宁, 董纯明, 赖其良, 等. 北极表层海水中氯代十六烷降解菌的多样性[J]. 微生物学报, 2012, 52(8): 1011-1020.]
[48]  Yang Kun, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 276-290.
[49]  Huang Lei, Li Dan. Isolation and identification of a low temperature hydrocarbon 2 degrading strain and its degradation characteristics[J]. Environmental Science, 2007, 28(9): 2101-2105. [黄磊, 李丹. 1株低温石油烃降解菌的分类鉴定及降解特性研究[J]. 环境科学, 2007, 28(9): 2101-2105.]
[50]  Wan Zhengming, Li Zhaoliang. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1997, 35(4): 980-996.
[51]  Kuyukina M S, Ivshina I B, Kamenskikh T N, et al. Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency[J]. International Biodeterioration & Biodegradation, 2013, 84: 118-125.
[52]  Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature[J]. International Journal of Remote Sensing, 2004, 25(1): 261-274.
[53]  Chaa?neau C H, Rougeux G, Yéprémian C, et al. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil[J]. Soil Biology and Biochemistry, 2005, 37(8): 1490-1497.
[54]  Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]//Geoscience and Remote Sensing Symposium, 2003, IGARSS'03, IEEE International, 2003(5): 3014-3016.
[55]  Qin Zhihao, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18): 3719-3746.
[56]  Wang Wanpeng, Shao Zongze. Identification of AlmA genes involved in long-chain alkane degradation by Alcanivorax hongdengensis A-11-3[J]. Acta Microbiologica Sinica, 2010(8): 1051-1057. [王万鹏, 邵宗泽. 红灯食烷菌(Alcanivorax hongdengensis)黄素结合单加氧酶(AlmA)的基因克隆及其烷烃诱导表达[J]. 微生物学报, 2010(8): 1051-1057.]
[57]  Jiménez-Mu?oz J C, Cristóbal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 339-349.
[58]  van Beilen J B, Smits T H M, Whyte L G, et al. Alkane hydroxylase homologues in Gram-positive strains[J]. Environmental Microbiology, 2002, 4(11): 676-682.
[59]  Yergeau E, Sanschagrin S, Beaumier D, et al. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils[J]. PLOS ONE, 2012, 7(1). doi:10.1371/journal.pone.0030058.
[60]  Jiménez-Mu?oz J C. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D22). doi:10.1029/2003JD003480.
[61]  Sobrino J A, Jiménez-Mu?oz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment, 2004, 90(4): 434-440.
[62]  Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir[J]. Proceedings of the National Academy of Sciences, 2007, 104(13): 5602-5607.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133