Xiang Shurong, Yao Tandong, Chen Yong, et al. Progresses of community distribution of microorganisms in glacier[J]. Acte Ecologic Sinica, 2006, 26(9): 3098-3107. [向述荣, 姚檀栋, 陈勇, 等. 冰川微生物菌群分布的研究概况及其前景[J]. 生态学报, 2006, 26(9): 3098-3107.]
[2]
Margesin R, Zacke G, Schinner F. Characterization of heterotrophic microorganisms in Alpine glacier cryoconite[J]. Arctic, Antarctic, and Alpine Research, 2002, 34(1): 88-93.
[3]
Mueller D R, Vincent W F, Fritsen C H, et al. Glacial cryoconite ecosystems: A bipolar comparison of algal communities and habitats[J]. Nova Hedwigia Beiheft, 2001(123): 173-197.
[4]
Christner B C, Kvitk B H, Reev J N. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole[J]. Extremophiles, 2003, 7(3): 177-183.
[5]
S?wstr?m C P, Mumford W, Marshall A, et al.The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79° N)[J]. Polar Biology, 2002, 25(8): 591-596.
[6]
Stibal M, ?abacká M, Ka?tovská K. Microbial counities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae[J]. Microbiology Ecology, 2006, 52(4): 644-654.
[7]
Foght J, Aislabie J, Turner S, et al. Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers[J]. Microbiology Ecology, 2004, 47(4): 329-340.
[8]
Willerslev E, Hansen A J, Christen B, et al. Diversity of holocene life forms in fossil glacier ice[J]. Proceeding of the National Academy Sciences USA, 1999, 96(14): 8017-8021.
[9]
Christner B C, Mosley-Thompson E, Thompson L G, et al. Recovery and identification of viable bacteria immured in glacial ice[J]. Icarus, 2000, 144(2): 479-485.
[10]
Wu Xiukun, Mao Wenliang, Tai Xisheng, et al. Progress in studies of microbial ecology in glacier foreland[J]. Joural of Glaciology and Geocryology, 2013, 35(1): 217-223. [伍修锟, 毛文梁, 台喜生, 等. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1): 217-223.]
[11]
Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environment factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 965-971. [章高森, 张威, 刘光琇, 等. 环境因素主导着冰川前沿裸露地好氧异样细菌群落的分布[J]. 冰川冻土, 2012, 34(1): 965-971.]
[12]
Xiang Shurong, Yao Tandong, An Lizhe, et al. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core[J]. Science in China (Series D), 2005, 48(10): 1728-1739. [向述荣, 姚檀栋, 安黎哲, 等. 慕士塔格冰芯可培养细菌的数量分布和主要菌群结构随深度的变化[J]. 中国科学(D辑), 2005, 35(3): 252-262.]
[13]
Lin Juan, Zhang Xinfang, An Lizhe, et al. Study of the diversity and depth distribution of bacteria isolated from the core of the Glacier No.1 at the headwaters of the ürümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 1033-1040. [林娟, 张新芳, 安黎哲, 等. 天山冰芯细菌多样性研究[J]. 冰川冻土, 2008, 30(6): 1033-1040.]
[14]
Yao Tandong, Liu Yongqin, Kang Shichang, et al.Bacteria variabilities in a Tibetan ice core and their relations with climate change[J]. Global Biogeochemical Cycles, 2007, 22(10): 1029-1038.
[15]
Li Zhongqin, Han Tianding, Jing Zhefan, et al.Summary of 40-year observed variation facts of climate and Glacier No.1 at headwater of ürümqi River, Tianshan, China[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 117-123. [李忠勤, 韩添丁, 井哲帆, 等. 乌鲁木齐河源区气候变化和1号冰川40 a观测事实[J]. 冰川冻土, 2003, 25(2): 117-123.]
[16]
Wang Shengjie, Zhang Mingjun, Li Zhongqin, et al. Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960[J]. Journal of Geographical Sciences, 2011, 21(2): 263-273.
[17]
Steven B, Pollard W H, Greer C W, et al. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic[J]. Environmental Microbiology, 2008, 10(12): 3338-3403.
[18]
Gu Yanling, Shi Xuewei, Zhu Jianbo, et al. Vertical distribution pattern of the archaea community within the permafrost active layer in front of the Glacier No.1 at headwaters of ürümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 761-769.[顾燕玲, 史学伟, 祝建波, 等. 天山乌鲁木齐河源1号冰川前沿冻土活动层古细菌群落的垂直分布格局[J]. 冰川冻土, 2013, 35(3): 761-769.]
[19]
Bai Yu, Yang Daqun, Wang Jianhui, et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China[J]. Research in Microbiology, 2006, 157(8): 741-751.
[20]
Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier[J]. Extremophiles, 2011, 15(3): 411-421.
[21]
Miteva V I, Sheridan P P, Brenchley J E. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core[J]. Applied and Environmental Microbiology, 2004, 70(1): 202-213.
[22]
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
[23]
Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[24]
Dong Xiuzhu, Cai Miaoying. Systematic Identification Manual for Common Bacteria[M]. Beijing: Science Press, 2001: 364-398.[东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364-398.]
[25]
Coleman D C, Pomeroy H, Estridge J K, et al. Susceptibility to antimicrobial agents and analysis of plasmids in gentamic-and methicillin-resistant Staphylococcus aureus from Dublin hospitals[J]. Journal of Medical Microbiology, 1985, 20(2): 157-167.
[26]
Sheng Yongping, Liang Hong. Global ice melting accelerated would threaten to human environmental safety[J]. Journal of Glaciology and Geocryology, 200l, 23(2): 208-211. [沈永平, 梁红. 全球冰川消融加剧使人类环境面临威胁[J]. 冰川冻土, 200l, 23(2): 208-211.]
[27]
Zeng Yinxin, Yan Ming, Yu Yong, et al. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard[J]. Archives of Microbiology, 2013, 195(5): 313-322.
[28]
Liu Yongqin, Yao Tandong, Jiao Nianzhi, et al. Culture bacteria in glacial meltwater at 6 350 m on the East Rongbuk Glacier, Mount Everest[J]. Extremophiles, 2009, 13(1): 89-99.
[29]
Cheng S M, Foght J M. Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans Glacier[J]. FEMS Microbiology Ecology, 2007, 59(2): 318-330.
[30]
Fong N, Burgess M, Barrow K, et al. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress[J]. Applied Microbiology and Biotechnology, 2001, 56(5/6): 750-756.
[31]
De Fede K L, Sexstone A J. Differential response of size fractionated soil bacteria in BIOLOG? microtitre plates[J]. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.
[32]
Ma Xiaojun, Liu Wei, Hou Shugui, et al. Bacterial diversity and community at Yulong Mountains and their relationship to climatic and environmental changes[J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(6): 94-100. [马晓军, 刘炜, 侯书贵, 等. 玉龙雪山冰川雪坑中细菌多样性群落结构及其与气候环境的关系[J]. 兰州大学学报(自然科学版), 2009, 45(6): 94-100.]
[33]
Ni Yongqing, Gu Yanling, Shi Xuewei, et al.Phylogenetic and physiological diversity of cold-adapted bacteria producing protease from sediments of the bottom layer of the Glacier No.1 in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2013, 53(2):164-172. [倪永清, 顾燕玲, 史学伟, 等. 天山1号冰川底部沉积层产蛋白酶耐低温菌株的筛选及其系统发育[J]. 微生物学报, 2013, 53(2): 164-172.]
[34]
Xu Yuli, Wang Dawei, Ni Yongqing, et al. Selective isolation and diversity of cold-adapted lipase-producing strains from permafrost soil at the terminus of a glacier in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2013, 53(2): 164-172. [徐宇丽, 王大伟, 倪永清, 等. 天山冻土产低温脂肪酶菌株的筛选及其多样性分析[J]. 微生物学报, 2011, 53(2): 233-240.]
[35]
Zhang Ming, Gu Yanling, Ni Yongqing, et al. Phylogenetic and physiological diversity of cold-adapted bacteria producing β-galactosidase from permafrost sediments of the bottom layer of the Glacier No.1 in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2011, 51(12): 1605-1615. [张明, 顾燕玲, 倪永清, 等. 天山1号冰川底部沉积层产β-半乳糖苷酶低温菌株的系统发育分析及生理多样性[J]. 微生物学报, 2011, 51(12): 1605-1615.]
[36]
Segawa T, Takeuchi N, Rivera A, et al. Distribution of antibiotic resistance genes in glacier environments[J]. Environmental Microbiology Reports, 2013, 5(1): 127-134.
[37]
Martinez J L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: The two ages in the evolution of resistance to antimicrobials[J]. Frontiers in Microbiology, 2012(3): 1. doi:10.3389/fmicb.2012.00001.
[38]
Singh P, Singh S M, Dhakephalkar P. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic[J]. Extremophiles, 2014, 18(2): 229-242.
[39]
Sj?lund M, Bonnedahl J, Hernandez J, et al. Dissemination of multidrug-resistant bacteria into the Arctic[J]. Emerging Infectious Diseases, 2008, 14(1): 70-72.