全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pre-Emptive Treatment of Lidocaine Attenuates Neuropathic Pain and Reduces Pain-Related Biochemical Markers in the Rat Cuneate Nucleus in Median Nerve Chronic Constriction Injury Model

DOI: 10.1155/2012/921405

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigates the effects of lidocaine pre-emptive treatment on neuropathic pain behavior, injury discharges of nerves, neuropeptide Y (NPY) and c-Fos expression in the cuneate nucleus (CN) after median nerve chronic constriction injury (CCI). Behavior tests demonstrated that the pre-emptive lidocaine treatment dose dependently delayed and attenuated the development of mechanical allodynia within a 28-day period. Electrophysiological recording was used to examine the changes in injury discharges of the nerves. An increase in frequency of injury discharges was observed and peaked at postelectrical stimulation stage in the presaline group, which was suppressed by lidocaine pre-emptive treatment in a dose-dependent manner. Lidocaine pretreatment also reduced the number of injury-induced NPY-like immunoreactive (NPY-LI) fibers and c-Fos-LI neurons within the CN in a dose-dependent manner. Furthermore, the mean number of c-Fos-LI neurons in the CN was significantly correlated to the NPY reduction level and the sign of mechanical allodynia following CCI. 1. Introduction Pre-emptive analgesia is broadly used in clinical practice for relieving postoperation pain and preventing the subsequent development of chronic neuropathic pain after surgery [1, 2]. In chronic constriction injuries (CCIs) of rat sciatic nerves [3], neuropathic pain behavior was also relieved by pre-emptive treatment of MK-801 [4], nociceptin [5], or lidocaine [6], but little is known about the effect of pre-emptive analgesia on neuropathic pain behavior after median nerve CCI. Attenuating ectopic discharges, originating from the damaged nerves [7, 8] and/or their dorsal root ganglia (DRG) [9], were considered to be one of the pre-emptive analgesia mechanisms to relieve neuropathic pain. Topical or systemic application of local anesthetics has been reported to attenuate ectopic discharges [9, 10]. Clinical studies have also indicated that neuropathic pain is alleviated by application of local anesthetics to the painful target areas [11, 12]. Lidocaine is a local anesthetic that produces a transient analgesic effect in humans affected by neuropathic and postoperative pain [13, 14]. Local pretreatment of lidocaine effectively suppresses injury discharges induced by median nerve transection (MNT) [15], but lack of evidence regarding the median nerve CCI model. Injury to median nerve, neuropeptide Y-like immunoreactive (NPY-LI) fibers are dramatically induced in the lesion side cuneate nucleus (CN), but not detected in the intact side [16]. Furthermore, given an electrical stimulation

References

[1]  D. Palmes, S. R?ttgermann, C. Classen, J. Haier, and R. Horstmann, “Randomized clinical trial of the influence of intraperitoneal local anaesthesia on pain after laparoscopic surgery,” British Journal of Surgery, vol. 94, no. 7, pp. 824–832, 2007.
[2]  C. S. Wong, C. C. Lu, C. H. Cherng, and S. T. Ho, “Pre-emptive analgesia with ketamine, morphine and epidural lidocaine prior to total knee replacement,” Canadian Journal of Anaesthesia, vol. 44, no. 1, pp. 31–37, 1997.
[3]  G. J. Bennett and Y. K. Xie, “A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man,” Pain, vol. 33, no. 1, pp. 87–107, 1988.
[4]  R. Munglani, M. J. Hudspith, B. Fleming et al., “Effect of pre-emptive NMDA antagonist treatment on long-term Fos expression and hyperalgesia in a model of chronic neuropathic pain,” Brain Research, vol. 822, no. 1-2, pp. 210–219, 1999.
[5]  T. Yamamoto, S. Ohtori, and T. Chiba, “Effects of pre-emptively administered nociceptin on the development of thermal hyperalgesia induced by two models of experimental mononeuropathy in the rat,” Brain Research, vol. 871, no. 2, pp. 192–200, 2000.
[6]  M. L. Sotgiu, A. Castagna, M. Lacerenza, and P. Marchettini, “Pre-injury lidocaine treatment prevents thermal hyperalgesia and cutaneous thermal abnormalities in a rat model of peripheral neuropathy,” Pain, vol. 61, no. 1, pp. 3–10, 1995.
[7]  O. Matzner and M. Devor, “Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels,” Journal of Neurophysiology, vol. 72, no. 1, pp. 349–359, 1994.
[8]  P. D. Wall, S. Waxman, and A. I. Basbaum, “Ongoing activity in peripheral nerve: injury discharge,” Experimental Neurology, vol. 45, no. 3, pp. 576–589, 1974.
[9]  M. Devor, P. D. Wall, and N. Catalan, “Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction,” Pain, vol. 48, no. 2, pp. 261–268, 1992.
[10]  P. D. Wall and M. Gutnick, “Properties of afferent nerve impulses originating from a neuroma,” Nature, vol. 248, no. 5451, pp. 740–743, 1974.
[11]  A. M. Comer and H. M. Lamb, “Lidocaine patch 5%,” Drugs, vol. 59, no. 2, pp. 245–249, 2000.
[12]  R. H. Gracely, S. A. Lynch, and G. J. Bennett, “Painful neuropathy: altered central processing maintained dynamically by peripheral input,” Pain, vol. 51, no. 2, pp. 175–194, 1992.
[13]  J. Kastrup, P. Petersen, and A. Dejgard, “Intravenous lidocaine infusion—a new treatment of chronic painful diabetic neuropathy?” Pain, vol. 28, no. 1, pp. 69–75, 1987.
[14]  P. Marchettini, M. Lacerenza, C. Marangoni, G. Pellegata, M. L. Sotgiu, and S. Smirne, “Lidocaine test in neuralgia,” Pain, vol. 48, no. 3, pp. 377–382, 1992.
[15]  C. T. Lin, H. Y. Wang, Y. J. Tsai, C. T. Huang, S. H. Chen, and J. H. Lue, “Pre-treatment with lidocaine suppresses ectopic discharges and attenuates neuropeptide Y and c-Fos expressions in the rat cuneate nucleus following median nerve transection,” Journal of Chemical Neuroanatomy, vol. 38, no. 1, pp. 47–56, 2009.
[16]  Y. J. Tsai, S. M. Leong, A. S. Day, C. Y. Wen, J. Y. Shieh, and J. H. Lue, “A time course analysis of the changes in neuropeptide Y immunoreactivity in the rat cuneate nucleus following median nerve transection,” Neuroscience Research, vol. 48, no. 4, pp. 369–377, 2004.
[17]  A. S. Day, J. H. Lue, W. Z. Sun, J. Y. Shieh, and C. Y. Wen, “Aβ-fiber intensity stimulation of chronically constricted median nerve induces c-fos expression in thalamic projection neurons of the cuneate nucleus in rats with behavioral signs of neuropathic pain,” Brain Research, vol. 895, no. 1-2, pp. 194–203, 2001.
[18]  J. H. Lue, S. M. Leong, A. S. Day, Y. J. Tsai, J. Y. Shieh, and C. Y. Wen, “Changes in c-Fos protein expression in the rat cuneate nucleus after electric stimulation of the transected median nerve,” Journal of Neurotrauma, vol. 19, no. 7, pp. 897–907, 2002.
[19]  J. A. Harris, “Using c-fos as a neural marker of pain,” Brain Research Bulletin, vol. 45, no. 1, pp. 1–8, 1998.
[20]  S. P. Hunt, A. Pini, and G. Evan, “Induction of c-fos-like protein in spinal cord neurons following sensory stimulation,” Nature, vol. 328, no. 6131, pp. 632–634, 1987.
[21]  S. I. Chi, J. D. Levine, and A. I. Basbaum, “Effects of injury discharge on the persistent expression of spinal cord fos-like immunoreactivity produced by sciatic nerve transection in the rat,” Brain Research, vol. 617, no. 2, pp. 220–224, 1993.
[22]  Y. J. Tsai, C. T. Lin, C. T. Huang et al., “Neuropeptide y modulates c-fos protein expression in the cuneate nucleus and contributes to mechanical hypersensitivity following rat median nerve injury,” Journal of Neurotrauma, vol. 26, no. 9, pp. 1609–1621, 2009.
[23]  M. Zimmermann, “Ethical guidelines for investigations of experimental pain in conscious animals,” Pain, vol. 16, no. 2, pp. 109–110, 1983.
[24]  M. Tal and G. J. Bennett, “Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve,” Pain, vol. 57, no. 3, pp. 375–382, 1994.
[25]  C. Molander, J. Hongpaisan, and G. Grant, “Changing pattern of c-FOS expression in spinal cord neurons after electrical stimulation of the chronically injured sciatic nerve in the rat,” Neuroscience, vol. 50, no. 1, pp. 223–236, 1992.
[26]  Y. J. Tsai, C. T. Lin, and J. H. Lue, “Characterization of the induced neuropeptide Y-like immunoreactivity in primary sensory neurons following complete median nerve transection,” Journal of Neurotrauma, vol. 24, no. 12, pp. 1878–1888, 2007.
[27]  S. Maslany, D. P. Crockett, and M. D. Egger, “Somatotopic organization of the dorsal column nuclei in the rat: transganglionic labelling with B-HRP and WGA-HRP,” Brain Research, vol. 564, no. 1, pp. 56–65, 1991.
[28]  W. Xie, J. A. Strong, J. T. A. Meij, J. M. Zhang, and L. Yu, “Neuropathic pain: early spontaneous afferent activity is the trigger,” Pain, vol. 116, no. 3, pp. 243–256, 2005.
[29]  S. Abdi, D. H. Lee, S. K. Park, and J. M. Chung, “Lack of pre-emptive analgesic effects of local anaesthetics on neuropathic pain,” British Journal of Anaesthesia, vol. 85, no. 4, pp. 620–623, 2000.
[30]  R. Munglani, A. Bond, G. D. Smith et al., “Changes in neuronal markers in a mononeuropathic rat model relationship between neuropeptide Y, pre-emptive drug treatment and long-term mechanical hyperalgesia,” Pain, vol. 63, no. 1, pp. 21–31, 1995.
[31]  M. S. Rao, S. Tyrrell, S. C. Landis, and P. H. Patterson, “Effects of ciliary neurotrophic factor (CNTF) and depolarization on neuropeptide expression in cultured sympathetic neurons,” Developmental Biology, vol. 150, no. 2, pp. 281–293, 1992.
[32]  Y. P. Feng, K. Yang, and Y. Q. Li, “Activation of capsaicin receptors on the sciatic nerve induces FOS expression in the spinal dorsal horn of adult rats,” NeuroSignals, vol. 11, no. 3, pp. 151–157, 2002.
[33]  C. Stenberg, K. ?vlisen, O. Svendsen, and B. Lauritzen, “Effect of local anaesthesia on neuronal c-fos expression in the spinal dorsal horn and hypothalamic paraventricular nucleus after surgery in rats,” Basic and Clinical Pharmacology and Toxicology, vol. 96, no. 5, pp. 381–386, 2005.
[34]  X. Sun, M. Yokoyama, S. Mizobuchi et al., “The effects of pretreatment with lidocaine or bupivacaine on the spatial and temporal expression of c-Fos protein in the spinal cord caused by plantar incision in the rat,” Anesthesia and Analgesia, vol. 98, no. 4, pp. 1093–1098, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413