全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data

DOI: 10.1155/2012/868090

Full-Text   Cite this paper   Add to My Lib

Abstract:

Information on soil clay and organic carbon content on a regional to local scale is vital for a multitude of reasons such as soil conservation, precision agriculture, and possibly also in the context of global environmental change. The objective of this study was to evaluate the potential of multi-annual hyperspectral images acquired with the HyMap sensor (450–2480?nm) during three flight campaigns in 2004, 2005, and 2008 for the prediction of clay and organic carbon content on croplands by means of partial least squares regression (PLSR). Supplementary, laboratory reflectance measurements were acquired under standardized conditions. Laboratory spectroscopy yielded prediction errors between 19.48 and 35.55?g?kg?1 for clay and 1.92 and 2.46?g?kg?1 for organic carbon. Estimation errors with HyMap image spectra ranged from 15.99 to 23.39?g?kg?1 for clay and 1.61 to 2.13?g?kg?1 for organic carbon. A comparison of parameter predictions from different years confirmed the predictive ability of the models. BRDF effects increased model errors in the overlap of neighboring flight strips up to 3 times, but an appropriated preprocessing method can mitigate these negative influences. Using multi-annual image data, soil parameter maps could be successively complemented. They are exemplarily shown providing field specific information on prediction accuracy and image data source. 1. Introduction Soil is the uppermost, weathered layer of the earth’s crust which forms the interface of the lithosphere, biosphere, hydrosphere, and atmosphere. As such, it acts as one of the major resources available to man whose conservation must be given high priority [1]. Clay and organic carbon are two key soil attributes as they contribute many benefits to its physical, chemical, and biological properties such as soil structure, soil water holding capacity, and soil fertility. Furthermore, the question whether CO2 can be sequestered in agricultural soils, to what degree and under which circumstances [2], has dramatically increased the interest in estimating soil organic carbon stocks (e.g., [3–5]). Yet, monitoring soil nutrient supply, degradation status, or organic carbon stocks requires information on soil properties over large areas with a high spatial resolution. The rate of repetition will depend on the issue considered. In any case, conventional soil sampling strategies suffer from the lack of providing data with a high spatial and temporal resolution as they are costly, labor intensive, and time consuming. As an alternative to standard analytical methods, visible and near

References

[1]  FAO, World Soil Charter, Food and Agriculture Organization of the United Nations (FAO), 1982.
[2]  R. Lal, “Soil carbon sequestration to mitigate climate change,” Geoderma, vol. 123, no. 1-2, pp. 1–22, 2004.
[3]  S. Sleutel, S. De Neve, B. Singier, and G. Hofman, “Organic C levels in intensively managed arable soils—long-term regional trends and characterization of fractions,” Soil Use and Management, vol. 22, no. 2, pp. 188–196, 2006.
[4]  E. Goidts and B. van Wesemael, “Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005),” Geoderma, vol. 141, no. 3-4, pp. 341–354, 2007.
[5]  A. Reijneveld, J. van Wensem, and O. Oenema, “Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004,” Geoderma, vol. 152, no. 3-4, pp. 231–238, 2009.
[6]  R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry,” Soil Science Society of America Journal, vol. 50, no. 1, pp. 120–123, 1986.
[7]  E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Science Society of America Journal, vol. 59, no. 2, pp. 364–372, 1995.
[8]  J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” Journal of Near Infrared Spectroscopy, vol. 7, no. 3, pp. 179–193, 1999.
[9]  K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 988–998, 2002.
[10]  D. J. Brown, K. D. Shepherd, M. G. Walsh, M. Dewayne Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma, vol. 132, no. 3-4, pp. 273–290, 2006.
[11]  R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006.
[12]  G. R. Hunt and J. W. Salisbury, “Visible and near-infrared spectra of minerals and rocks. I. Silicate minerals,” Modern Geology, vol. 1, pp. 283–300, 1970.
[13]  R. N. Clark, T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” Journal of Geophysical Research, vol. 95, no. 8, pp. 12–680, 1990.
[14]  E. Ben-Dor, J. R. Irons, and G. Epema, “Soil reflectance,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, A. N. Rencz, Ed., vol. 3, chapter 3, pp. 111–188, John Wiley & Sons, New York, NY, USA, 3rd edition, 1999.
[15]  A. Palacios-Orueta and S. L. Ustin, “Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis,” Remote Sensing of Environment, vol. 65, no. 2, pp. 170–183, 1998.
[16]  G. Krüger, J. Erzinger, and H. Kaufmann, “Laboratory and airborne reflectance spectroscopic analyses of lignite overburden dumps,” Journal of Geochemical Exploration, vol. 64, no. 1–3, pp. 47–65, 1999.
[17]  S. Chabrillat, A. F. H. Goetz, L. Krosley, and H. W. Olsen, “Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution,” Remote Sensing of Environment, vol. 82, no. 2-3, pp. 431–445, 2002.
[18]  E. Ben-Dor, K. Patkin, A. Banin, and A. Karnieli, “Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—a case study over soils in Israel,” International Journal of Remote Sensing, vol. 23, no. 6, pp. 1043–1062, 2002.
[19]  T. Selige, J. B?hner, and U. Schmidhalter, “High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures,” Geoderma, vol. 136, no. 1-2, pp. 235–244, 2006.
[20]  A. Stevens, T. Udelhoven, A. Denis et al., “Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy,” Geoderma, vol. 158, no. 1-2, pp. 32–45, 2010.
[21]  C. Gomez, R. A. Viscarra Rossel, and A. B. McBratney, “Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study,” Geoderma, vol. 146, no. 3-4, pp. 403–411, 2008.
[22]  P. Lagacherie, F. Baret, J. B. Feret, J. Madeira Netto, and J. M. Robbez-Masson, “Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements,” Remote Sensing of Environment, vol. 112, no. 3, pp. 825–835, 2008.
[23]  A. Stevens, B. Van Wesemael, G. Vandenschrick, S. Touré, and B. Tychon, “Detection of carbon stock change in agricultural soils using spectroscopic techniques,” Soil Science Society of America Journal, vol. 70, no. 3, pp. 844–850, 2006.
[24]  B. S. Siegal and A. F. H. Goetz, “Effects of vegetation on rock and soil type discrimination,” Photogrammetric Engineering and Remote Sensing, vol. 43, no. 2, pp. 191–196, 1977.
[25]  L. Kooistra, J. Wanders, G. F. Epema, R. S. E. W. Leuven, R. Wehrens, and L. M. C. Buydens, “The potential of field spectroscopy for the assessment of sediment properties in river floodplains,” Analytica Chimica Acta, vol. 484, no. 2, pp. 189–200, 2003.
[26]  R. J. Murphy and G. Wadge, “The effects of vegetation on the ability to map soils using imaging spectrometer data,” International Journal of Remote Sensing, vol. 15, no. 1, pp. 63–86, 1994.
[27]  R. J. Murphy, “The effects of surficial vegetation cover on mineral absorption feature parameters,” International Journal of Remote Sensing, vol. 16, no. 12, pp. 2153–2164, 1995.
[28]  H. Bartholomeus, L. Kooistra, A. Stevens et al., “Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 13, no. 1, pp. 81–88, 2011.
[29]  W. Ouerghemmi, C. Gomez, S. Naceur, and P. Lagacherie, “Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces,” Geoderma, vol. 163, no. 3-4, pp. 227–237, 2011.
[30]  H. Bartholomeus, G. Epema, and M. Schaepman, “Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 9, no. 2, pp. 194–203, 2007.
[31]  A. Rodger and T. Cudahy, “Vegetation corrected continuum depths at 2.20 μm: an approach for hyperspectral sensors,” Remote Sensing of Environment, vol. 113, no. 10, pp. 2243–2257, 2009.
[32]  C. Gomez, P. Lagacherie, and G. Coulouma, “Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements,” Geoderma, vol. 148, no. 2, pp. 141–148, 2008.
[33]  L. Kooistra, R. S. E. W. Leuven, R. Wehrens, P. H. Nienhuis, and L. M. C. Buydens, “A comparison of methods to relate grass reflectance to soil metal contamination,” International Journal of Remote Sensing, vol. 24, no. 24, pp. 4995–5010, 2003.
[34]  A. Stevens, B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon, and E. Ben-Dor, “Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils,” Geoderma, vol. 144, no. 1-2, pp. 395–404, 2008.
[35]  G. B. M. Heuvelink and R. Webster, “Modelling soil variation: past, present, and future,” Geoderma, vol. 100, no. 3-4, pp. 269–301, 2001.
[36]  P. Leinweber, H. R. Schulten, and M. K?rschens, “Seasonal variations of soil organic matter in a long-term agricultural experiment,” Plant and Soil, vol. 160, no. 2, pp. 225–235, 1994.
[37]  S. E. Trumbore, O. A. Chadwick, and R. Amundson, “Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change,” Science, vol. 272, no. 5260, pp. 393–396, 1996.
[38]  Y. Wang, R. Amundson, and X. F. Niu, “Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux,” Global Biogeochemical Cycles, vol. 14, no. 1, pp. 199–211, 2000.
[39]  J. Rogasik, E. Schnug, and H. Rogasik, “Landbau und treibhauseffekt—quellen und senken für CO2 bei unterschiedlicher Landbewirtschaftung,” Archives of Agronomy and Soil Science, vol. 45, no. 2, pp. 105–121, 2000.
[40]  F. Ellmer and M. Baumecker, “Static nutrient depletion experiment Thyrow. Results after 65 experimental years,” Archives of Agronomy and Soil Science, vol. 51, no. 2, pp. 151–161, 2005.
[41]  L. S. Jensen, T. Mueller, N. E. Nielsen et al., “Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY,” Geoderma, vol. 81, no. 1-2, pp. 5–28, 1997.
[42]  T. Dann and U. Ratzke, “B?den,” in Geologie von Mecklenburg-Vorpommern. Kap. 6. 12, E. Schweizerbart’Sche Verlagsbuchhandlung, G. Katzung, Ed., pp. 489–508, N?gele u. Obermiller, Stuttgart, Germany, 2004.
[43]  DWD, “DWD—Deutscher Wetterdienst, Deutscher Klimaatlas,” 2012, http://www.dwd.de/klimaatlas.
[44]  D. F. Malley, P. D. Martin, and E. Ben-Dor, “Application in analysis of soils,” in Near-Infrared Spectroscopy in Agriculture, C. A. Roberts, J. Workman Jr., and J. B. Reeves III, Eds., pp. 729–784, American Society of Agronomy, Madison, Wis, USA, 2004.
[45]  J. L. Lozán and H. Kausch, Angewandte Statistik für Naturwissenschaftler. 3. überarbeitete und erg?nzte Auflg., Wissenschaftliche Auswertungen, Hamburg, Germany, 2004.
[46]  A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.
[47]  Exelis VIS, Exelis Visual Information Solutions, 2011.
[48]  R. Richter, “Atmospheric/ topographic correction for airborne imagery,” 2008, ATCOR-4 User Guide, Version 4. 3.
[49]  R. Richter and D. Schl?pfer, “Geo-atmospheric processing of airborne imaging spectrometry data—part 2: atmospheric/topographic correction,” International Journal of Remote Sensing, vol. 23, no. 13, pp. 2631–2649, 2002.
[50]  R. Müller, M. Lehner, P. Reinartz, and M. Schroeder, “Evaluation of spaceborne and airborne line scanner images using a generic ortho image processor,” in High Resolution Earth Imaging for Geospatial Information, C. Heipke, K. Jacobsen, and M. Gerke, Eds., vol. 36 of International Archives of Photogrammetry and Remote Sensing, pp. 17–20, High Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2005.
[51]  K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy,” Australian Journal of Soil Research, vol. 41, no. 6, pp. 1101–1114, 2003.
[52]  P. H. Fidêncio, R. J. Poppi, and J. C. De Andrade, “Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy,” Analytica Chimica Acta, vol. 453, no. 1, pp. 125–134, 2002.
[53]  M. Cohen, R. S. Mylavarapu, I. Bogrekci, W. S. Lee, and M. W. Clark, “Reflectance spectroscopy for routine agronomic soil analyses,” Soil Science, vol. 172, no. 6, pp. 469–485, 2007.
[54]  R. A. Viscarra Rossel, “ParLeS: software for chemometric analysis of spectroscopic data,” Chemometrics and Intelligent Laboratory Systems, vol. 90, no. 1, pp. 72–83, 2008.
[55]  H. Martens and T. N?s, Multivariate Calibration, John Wiley & Sons, Guildford, UK, 1989.
[56]  C. W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 480–490, 2001.
[57]  LUNG, Landesamt für Umwelt, and Naturschutz und Geologie Mecklenburg Vorpommern, Beitr?ge Zum Bodenschutz in Mecklenburg-Vorpommern, B?den in Mecklenburg-Vorpommern, Güstrow, Germany, 2003.
[58]  O. Düwel and J. Utermann, “Humusversorgung der (Ober-)B?den in Deutschland—status quo,” in Humusversorgung von B?den in Deutschland, R. F. Hüttl, A. Prechtel, and O. Bens, Eds., Publikationen des Umweltbundesamtes, Abschnitt II, Kap. 8.1, 2008.
[59]  D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 722–727, 2002.
[60]  C. S. T. Daughtry, E. R. Hunt, C. L. Walthall, T. J. Gish, S. Liang, and E. J. Kramer, “Assessing the spatial distribution of plant litter,” in Proceedings of the 10th AVIRIS Earth Science and Applications Workshop, pp. 105–114, NASA, Jet Propulsion, Pasadena, Calif, USA, March 2001.
[61]  P. L. Nagler, C. S. T. Daughtry, and S. N. Goward, “Plant litter and soil reflectance,” Remote Sensing of Environment, vol. 71, no. 2, pp. 207–215, 2000.
[62]  P. L. Nagler, Y. Inoue, E. P. Glenn, A. L. Russ, and C. S. T. Daughtry, “Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes,” Remote Sensing of Environment, vol. 87, no. 2-3, pp. 310–325, 2003.
[63]  D. J. Brus, B. Kempen, and G. B. M. Heuvelink, “Sampling for validation of digital soil maps,” European Journal of Soil Science, vol. 62, no. 3, pp. 394–407, 2011.
[64]  T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Science Society of America Journal, vol. 71, no. 2, pp. 389–396, 2007.
[65]  D. Cozzolino and A. Morón, “The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics,” Journal of Agricultural Science, vol. 140, no. 1, pp. 65–71, 2003.
[66]  A. Volkan Bilgili, H. M. van Es, F. Akbas, A. Durak, and W. D. Hively, “Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey,” Journal of Arid Environments, vol. 74, no. 2, pp. 229–238, 2010.
[67]  S. Wold, M. Sj?str?m, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001.
[68]  E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500?nm) during a controlled decomposition process,” Remote Sensing of Environment, vol. 61, no. 1, pp. 1–15, 1997.
[69]  J. Workman Jr. and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy, CRC Press, Taylor & Francis Group, Boca Raton, Fla, USA, 2008.
[70]  C. W. Chang and D. A. Laird, “Near-infrared reflectance spectroscopic analysis of soil C and N,” Soil Science, vol. 167, no. 2, pp. 110–116, 2002.
[71]  T. Udelhoven, C. Emmerling, and T. Jarmer, “Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study,” Plant and Soil, vol. 251, no. 2, pp. 319–329, 2003.
[72]  M. von Sch?nermark, B. Geiger, and H. R?ser, Eds., Reflection Properties of Vegetation and Soil with a BRDF data base, Wissenschaft und Technik, Berlin, Germany, 2004.
[73]  H. Kaufmann, L. Guanter, K. Segl et al., “EnMAP—an advanced optical payload for earth observation,” in Proceedings of ASD and IEEE GRS Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, Colo, USA, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413