全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism

DOI: 10.1155/2012/190930

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism. 1. Introduction Neurological and behavioral symptoms implicate abnormal brain development as a core pathophysiological feature of autism, but increasing evidence also indicates immune [1–8] and gastrointestinal (GI) abnormalities in a significant subset [1, 8–12]. This triad of dysfunctional systems provides not only a more complete description of autism and autism spectrum disorders (ASDs), but also an important opportunity to consider the mechanisms which could result in the shared involvement of these three particular systems, especially in the context of development. Recent elucidation of the central role of epigenetic regulation of gene expression in development presents a molecular framework within which prenatal and postnatal maturation of neuronal, immune, and GI systems can be viewed. As all cells possess the same DNA, their differentiation into various cell types reflects stable suppression of some genes and activation of others, accomplished in large part by epigenetic regulation. Such regulation involves reversible modifications of both DNA nucleotides and

References

[1]  P. Ashwood, A. Anthony, F. Torrente, and A. J. Wakefield, “Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10,” Journal of Clinical Immunology, vol. 24, no. 6, pp. 664–673, 2004.
[2]  C. A. Pardo, D. L. Vargas, and A. W. Zimmerman, “Immunity, neuroglia and neuroinflammation in autism,” International Review of Psychiatry, vol. 17, no. 6, pp. 485–495, 2005.
[3]  P. Goines and J. van de Water, “The immune system's role in the biology of autism,” Current Opinion in Neurology, vol. 23, no. 2, pp. 111–117, 2010.
[4]  G. A. Mostafa, A. Al Shehab, and N. R. Fouad, “Frequency of CD4+CD25 high regulatory T cells in the peripheral blood of Egyptian children with autism,” Journal of Child Neurology, vol. 25, no. 3, pp. 328–335, 2010.
[5]  G. A. Mostafa, E. S. El-Hadidi, D. H. Hewedi, and M. M. Abdou, “Oxidative stress in Egyptian children with autism: relation to autoimmunity,” Journal of Neuroimmunology, vol. 219, no. 1-2, pp. 114–118, 2010.
[6]  C. Onore, M. Careaga, and P. Ashwood, “The role of immune dysfunction in the pathophysiology of autism,” Brain, Behavior, and Immunity, vol. 26, no. 3, pp. 383–392, 2012.
[7]  D. A. Rossignol and R. E. Frye, “A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures,” Molecular Psychiatry, vol. 17, no. 4, pp. 389–401, 2012.
[8]  H. Jyonouchi, L. Geng, D. L. Streck, and G. A. Toruner, “Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes,” Journal of Neuroimmunology, vol. 238, pp. 73–80, 2011.
[9]  B. L. Williams, M. Hornig, T. Buie et al., “Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances,” PLoS ONE, vol. 6, no. 9, Article ID e24585, 2011.
[10]  T. Buie, G. J. Fuchs III, G. T. Furuta et al., “Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs,” Pediatrics, vol. 125, no. 1, pp. S19–S29, 2010.
[11]  T. Buie, D. B. Campbell, G. J. Fuchs et al., “Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report,” Pediatrics, vol. 125, no. 1, pp. S1–S18, 2010.
[12]  R. N. Nikolov, K. E. Bearss, J. Lettinga et al., “Gastrointestinal symptoms in a sample of children with pervasive developmental disorders,” Journal of Autism and Developmental Disorders, vol. 39, no. 3, pp. 405–413, 2009.
[13]  A. P. Feinberg, “Epigenetics at the epicenter of modern medicine,” Journal of the American Medical Association, vol. 299, no. 11, pp. 1345–1350, 2008.
[14]  J. M. Lasalle and D. H. Yasui, “Evolving role of MeCP2 in Rett syndrome and autism,” Epigenomics, vol. 1, pp. 119–130, 2009.
[15]  Y. Natsume-Kitatani, M. Shiga, and H. Mamitsuka, “Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes Co-regulated by histone modification patterns,” PLoS ONE, vol. 6, no. 7, Article ID e22281, 2011.
[16]  M. K. Skinner and C. Guerrero-Bosagna, “Environmental signals and transgenerational epigenetics,” Epigenomics, vol. 1, pp. 111–117, 2009.
[17]  F. Perera and J. Herbstman, “Prenatal environmental exposures, epigenetics, and disease,” Reproductive Toxicology, vol. 31, no. 3, pp. 363–373, 2011.
[18]  R. Feil and M. F. Fraga, “Epigenetics and the environment: emerging patterns and implications,” Nature Reviews Genetics, vol. 13, pp. 97–109, 2012.
[19]  Z. Hochberg, R. Feil, M. Constancia et al., “Child health, developmental plasticity, and epigenetic programming,” Endocrine Reviews, vol. 32, no. 2, pp. 159–224, 2011.
[20]  J. M. LaSalle, “A genomic point-of-view on environmental factors influencing the human brain methylome,” Epigenetics, vol. 6, no. 7, pp. 862–869, 2011.
[21]  M. Hornig, D. Chian, and W. I. Lipkin, “Neurotoxic effects of postnatal thimerosal are mouse strain dependent,” Molecular Psychiatry, vol. 9, no. 9, pp. 833–845, 2004.
[22]  M. I. Waly, K. K. Kharbanda, and R. C. Deth, “Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamin-dependent manner,” Alcoholism, vol. 35, no. 2, pp. 277–283, 2011.
[23]  D. P. Jones and Y. M. Go, “Redox compartmentalization and cellular stress,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 116–125, 2010.
[24]  E. S. J. Arnér and A. Holmgren, “Physiological functions of thioredoxin and thioredoxin reductase,” European Journal of Biochemistry, vol. 267, no. 20, pp. 6102–6109, 2000.
[25]  F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001.
[26]  X. Sun, A. Y. Shih, H. C. Johannssen, H. Erb, P. Li, and T. H. Murphy, “Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface,” Journal of Biological Chemistry, vol. 281, no. 25, pp. 17420–17431, 2006.
[27]  S. M. Beer, E. R. Taylor, S. E. Brown et al., “Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 47939–47951, 2004.
[28]  I. Dalle-Donne, R. Rossi, G. Colombo, D. Giustarini, and A. Milzani, “Protein S-glutathionylation: a regulatory device from bacteria to humans,” Trends in Biochemical Sciences, vol. 34, no. 2, pp. 85–96, 2009.
[29]  J. B. Adams, T. Audhya, S. McDonough-Means et al., “Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity,” Nutrition and Metabolism, vol. 8, article 34, 2011.
[30]  J. B. Adams, M. Baral, E. Geis, et al., “The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels,” Journal of Toxicology, vol. 2009, Article ID 532640, 7 pages, 2009.
[31]  é. Pastural, S. Ritchie, Y. Lu et al., “Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 81, no. 4, pp. 253–264, 2009.
[32]  Y. Al-Gadani, A. El-Ansary, O. Attas, and L. Al-Ayadhi, “Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children,” Clinical Biochemistry, vol. 42, no. 10-11, pp. 1032–1040, 2009.
[33]  S. P. Pa?ca, E. Dronca, T. Kaucsár et al., “One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders,” Journal of Cellular and Molecular Medicine, vol. 13, no. 10, pp. 4229–4238, 2009.
[34]  D. A. Geier, J. K. Kern, C. R. Garver et al., “Biomarkers of environmental toxicity and susceptibility in autism,” Journal of the Neurological Sciences, vol. 280, no. 1-2, pp. 101–108, 2009.
[35]  D. A. Geier, J. K. Kern, C. R. Garver, J. B. Adams, T. Audhya, and M. R. Geier, “A prospective study of transsulfuration biomarkers in autistic disorders,” Neurochemical Research, vol. 34, no. 2, pp. 386–393, 2009.
[36]  S. Jill James, S. Melnyk, S. Jernigan, A. Hubanks, S. Rose, and D. W. Gaylor, “Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism,” Journal of Autism and Developmental Disorders, vol. 38, no. 10, pp. 1966–1975, 2008.
[37]  S. J. James, S. Melnyk, S. Jernigan et al., “Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism,” American Journal of Medical Genetics B, vol. 141, no. 8, pp. 947–956, 2006.
[38]  S. J. James, P. Cutler, S. Melnyk et al., “Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism,” The American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1611–1617, 2004.
[39]  S. Melnyk, G. J. Fuchs, E. Schulz et al., “Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism,” Journal of Autism and Developmental Disorders, vol. 42, no. 3, pp. 367–377, 2011.
[40]  A. Chauhan and V. Chauhan, “Oxidative stress in autism,” Pathophysiology, vol. 13, no. 3, pp. 171–181, 2006.
[41]  L. Palmieri, V. Papaleo, V. Porcelli et al., “Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1,” Molecular Psychiatry, vol. 15, no. 1, pp. 38–52, 2010.
[42]  V. Napolioni, A. M. Persico, V. Porcelli, and L. Palmieri, “The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism,” Molecular Neurobiology, vol. 44, no. 1, pp. 83–92, 2011.
[43]  Y. Kanai and M. A. Hediger, “Primary structure and functional characterization of a high-affinity glutamate transporter,” Nature, vol. 360, no. 6403, pp. 467–471, 1992.
[44]  T. Iwanaga, M. Goto, and M. Watanabe, “Cellular distribution of glutamate transporters in the gastrointestinal tract of mice. An immunohistochemical and in situ hybridization approach,” Biomedical Research, vol. 26, no. 6, pp. 271–278, 2006.
[45]  A. J. Wakefield, P. Ashwood, K. Limb, and A. Anthony, “The significance of ileo-colonic lymphoid nodular hyperplasia in children with autistic spectrum disorder,” European Journal of Gastroenterology and Hepatology, vol. 17, no. 8, pp. 827–836, 2005.
[46]  K. Aoyama, M. Watabe, and T. Nakaki, “Regulation of neuronal glutathione synthesis,” Journal of Pharmacological Sciences, vol. 108, no. 3, pp. 227–238, 2008.
[47]  D. Trotti, N. C. Danbolt, and A. Volterra, “Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration?” Trends in Pharmacological Sciences, vol. 19, no. 8, pp. 328–334, 1998.
[48]  S. Singh, S. Vrishni, B. K. Singh, I. Rahman, and P. Kakkar, “Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases,” Free Radical Research, vol. 44, no. 11, pp. 1267–1288, 2010.
[49]  C. Escartin, S. J. Won, C. Malgorn et al., “Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression,” Journal of Neuroscience, vol. 31, no. 20, pp. 7392–7401, 2011.
[50]  S. Caja, M. M?ki, K. Kaukinen, and K. Lindfors, “Antibodies in celiac disease: implications beyond diagnostics,” Cellular and Molecular Immunology, vol. 8, no. 2, pp. 103–109, 2011.
[51]  F. R. Huebner, K. W. Lieberman, R. P. Rubino, and J. S. Wall, “Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates,” Peptides, vol. 5, no. 6, pp. 1139–1147, 1984.
[52]  H. Teschemacher, “Opioid receptor ligands derived from food proteins,” Current Pharmaceutical Design, vol. 9, no. 16, pp. 1331–1344, 2003.
[53]  M. S. Trivedi, N. W. Hodgson, and R. C. Deth, “Casein and gluten-derived peptides modulate cysteine uptake and cellular thiol levels via activation of opiate receptors,” Society for Neuroscience Meeting. In press.
[54]  T. C. Petrossian and S. G. Clarke, “Uncovering the human methyltransferasome,” Molecular and Cellular Proteomics. In press.
[55]  R. Deth, C. Muratore, J. Benzecry, V. A. Power-Charnitsky, and M. Waly, “How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis,” NeuroToxicology, vol. 29, no. 1, pp. 190–201, 2008.
[56]  T. Ganesan, M. H. Khadra, J. Wallis, and D. E. Neal, “Vitamin B12 malabsorption following bladder reconstruction or diversion with bowel segments,” ANZ Journal of Surgery, vol. 72, no. 7, pp. 479–482, 2002.
[57]  S. Vasilopoulos, K. Saiean, J. Emmons et al., “Terminal ileum resection is associated with higher plasma homocysteine levels in Crohn's disease,” Journal of Clinical Gastroenterology, vol. 33, no. 2, pp. 132–136, 2001.
[58]  M. E. McNally, S. A. Atkinson, and D. E. C. Cole, “Contribution of sulfate and sulfoesters to total sulfur intake in infants fed human milk,” Journal of Nutrition, vol. 121, no. 8, pp. 1250–1254, 1991.
[59]  J. C. Miner, E. Bissé, C. P. Aebischer, A. Bell, H. Wieland, and J. Lutschg, “Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates,” The American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 751–757, 2000.
[60]  T. Ozgurtas, I. Aydin, O. Turan et al., “Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-I and platelet-derived growth factor levels in human milk of mothers with term and preterm neonates,” Cytokine, vol. 50, no. 2, pp. 192–194, 2010.
[61]  M. S. Murphy, “Growth factors and the gastrointestinal tract,” Nutrition, vol. 14, no. 10, pp. 771–774, 1998.
[62]  N. Hodgson, M. Waly, and R. C. Deth, “EAAT3-mediated cysteine uptake in human neuroblastoma cells is PI3 kinase-dependent,” in Proceedings of the Society for Neuroscience Meeting, November 2008.
[63]  H. Yang, N. Magilnick, M. Xia, and S. C. Lu, “Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent,” Experimental Cell Research, vol. 314, no. 2, pp. 398–412, 2008.
[64]  J. G. Dorea, “Selenium and breast-feeding,” British Journal of Nutrition, vol. 88, no. 5, pp. 443–461, 2002.
[65]  S. D Watts, D. Torres-Salazar, C. B. Divito, and S. G. Amara, “EAAT3 cysteine transport: potential mechanism of cysteine binding and translocation,” in Proceedings of the Society for Neuroscience Meeting, November 2009.
[66]  J. J. Day and J. D. Sweatt, “Epigenetic mechanisms in cognition,” Neuron, vol. 70, no. 5, pp. 813–829, 2011.
[67]  A. Castagna, C. Le Grazie, A. Accordini et al., “Cerebrospinal fluid S-adenosylmethionine (SAMe) and glutathione concentrations in HIV infection: effect of parenteral treatment with SAMe,” Neurology, vol. 45, no. 9, pp. 1678–1683, 1995.
[68]  H. H. Tallan , S. Moore, and W. H. Stein, “L-cystathionine in human brain,” The Journal of Biological Chemistry, vol. 230, no. 2, pp. 707–716, 1958.
[69]  J. Gr?ff, D. Kim, M. M. Dobbin, and T. Li-Huei, “Epigenetic regulation of gene expression in physiological and pathological brain processes,” Physiological Reviews, vol. 91, no. 2, pp. 603–649, 2011.
[70]  C. M. L. Carvalho, E. H. Chew, S. I. Hashemy, J. Lu, and A. Holmgren, “Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity,” Journal of Biological Chemistry, vol. 283, no. 18, pp. 11913–11923, 2008.
[71]  N. V. C. Ralston and L. J. Raymond, “Dietary selenium's protective effects against methylmercury toxicity,” Toxicology, vol. 278, no. 1, pp. 112–123, 2010.
[72]  K. T. Suzuki, C. Sasakura, and S. Yoneda, “Binding sites for the (Hg-Se) complex on selenoprotein P,” Biochimica et Biophysica Acta, vol. 1429, no. 1, pp. 102–112, 1998.
[73]  A. Sharma, M. L. Kramer, P. F. Wick et al., “D4 dopamine receptor-mediated phospholipid methylation and its implications for mental illnesses such as schizophrenia,” Molecular Psychiatry, vol. 4, no. 3, pp. 235–246, 1999.
[74]  J. M. Swanson, M. Kinsbourne, J. Nigg et al., “Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis,” Neuropsychology Review, vol. 17, no. 1, pp. 39–59, 2007.
[75]  A. Y. Kuznetsova and R. C. Deth, “A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation,” Journal of Computational Neuroscience, vol. 24, no. 3, pp. 314–329, 2008.
[76]  T. Demiralp, C. S. Herrmann, M. E. Erdal et al., “DRD4 and DAT1 polymorphisms modulate human gamma band responses,” Cerebral Cortex, vol. 17, no. 5, pp. 1007–1019, 2007.
[77]  Z. Yan, S. K. Garg, and R. Banerjee, “Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells,” Journal of Biological Chemistry, vol. 285, no. 53, pp. 41525–41532, 2010.
[78]  V. T. Ramaekers, N. Blau, J. M. Sequeira, M. C. Nassogne, and E. V. Quadros, “Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits,” Neuropediatrics, vol. 38, no. 6, pp. 276–281, 2007.
[79]  V. T. Ramaekers, J. M. Sequeira, N. Blau, and E. V. Quadros, “A milk-free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome,” Developmental Medicine and Child Neurology, vol. 50, no. 5, pp. 346–352, 2008.
[80]  R. E. Frye, J. M. Sequeira, E. V. Quadros, S. J. James, and D. A. Rossignol, “Cerebral folate receptor autoantibodies in autism spectrum disorder,” Molecular Psychiatry. In press.
[81]  J. K. Polansky, L. Schreiber, C. Thelemann et al., “Methylation matters: Binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1029–1040, 2010.
[82]  S. Hussain, S. J. Kirwin, and S. A. Stohlman, “Increased T regulatory cells lead to development of Th2 immune response in male SJL mice,” Autoimmunity, vol. 44, no. 3, pp. 219–228, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133