Autism is a chronic neurodevelopmental disorder of unknown cause that affects approximately 1–3 percent of children and four times more boys than girls. Its prevalence is global and its social impact is devastating. In autism, the brain is unable to process sensory information normally. Instead, simple stimuli from the outside world are experienced as overwhelmingly intense and strain the emotional centers of the brain. A stress response to the incoming information is initiated that destabilizes cognitive networks and short-circuits adequate behavioral output. As a result, the child is unable to respond adequately to stimulation and initiate social behavior towards family, friends, and peers. In addition, these children typically face immune-digestive disorders that heighten social fears, anxieties, and internal conflicts. While it is critical to treat the physical symptoms, it is equally vital to offer an evidence-based holistic solution that harmonizes both their emotional and physical well-being as they move from childhood into adult life. Here, we summarize evidence from clinical studies and neuroscience research that suggests that an approach built on yogic principles and meditative tools is worth pursuing. Desired outcomes include relief of clinical symptoms of the disease, greater relaxation, and facilitated expression of feelings and skills, as well as improved family and social quality of life. 1. Background Autism belongs to a group of related disorders that starts in infancy and remains throughout adult life [1]. Impaired social interaction at a young age affects early milestones of human development and a myriad of immune deficiencies will also afflict the majority of these children [2–8] The etiology of autism is not known. However, it is currently agreed that a combination of genetic and epigenetic factors, contribute to autism, the first trimester of pregnancy being a particularly vulnerable time to triggers of the disease. Autism is characterized by widespread disruption of the brain networks that underlie complex cognitive and emotional functions that results in an imbalanced neurological response to cues from the external world and, particularly, in the way the child responds to stress. A myriad of treatments for autism have been proposed; however, in most cases the existing data are insufficient to support their efficacy [9]. This is primarily due to the confounding complexity of genetic traits of the disease, as well as the difficulty in distinguishing the cause from downstream pathologies. And yet in the United States, the lifetime
References
[1]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Health Disorders-TR, American Psychiatric, 2000.
[2]
D. S. Mandell and R. Palmer, “Differences among states in the identification of autistic spectrum disorders,” Archives of Pediatrics and Adolescent Medicine, vol. 159, no. 3, pp. 266–269, 2005.
[3]
G. Oliveira, A. Ataide, C. Marques et al., “Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditions,” Developmental Medicine and Child Neurology, vol. 49, no. 10, pp. 726–733, 2007.
[4]
V. C. N. Wong and S. L. H. Hui, “Epidemiological study of autism spectrum disorder in China,” Journal of Child Neurology, vol. 23, no. 1, pp. 67–72, 2008.
[5]
Centers for Disease Control and Prevention (U.S.), Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network, Six Sites, United States, 2000, Centers for Disease Control and Prevention (CDC) (U.S.), 2009.
[6]
T. S. Brugha, S. McManus, J. Bankart et al., “Epidemiology of autism spectrum disorders in adults in the community in England,” Archives of General Psychiatry, vol. 68, no. 5, pp. 459–465, 2011.
[7]
Y. S. Kim, B. L. Leventhal, Y. J. Koh, et al., “Prevalence of autism spectrum disorders in a total population sample,” American Journal of Psychiatry, vol. 168, no. 9, pp. 904–912, 2011.
[8]
S. A. Samadi, A. Mahmoodizadeh, and R. McConkey, “A national study of the prevalence of autism among five-year-old children in Iran,” Autism, vol. 16, no. 1, pp. 5–14, 2012.
[9]
DHHS, Interventions for Autism Spectrum Disorders: State of the Evidence-Report of the Children's Services Evidence-Based Practice Advisory Committee, Department of Health and Human Services and Maine Department of Education, 2009.
[10]
M. L. Ganz, “The lifetime distribution of the incremental societal costs of autism,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 4, pp. 343–349, 2007.
[11]
T. E. Moffitt, L. Arseneault, D. Belsky et al., “A gradient of childhood self-control predicts health, wealth, and public safety,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2693–2698, 2011.
[12]
S. Begley, “I can't think!,” Newsweek, pp. 28–33, 2011.
[13]
A. Diamond and K. Lee, “Interventions shown to aid executive function development in children 4 to 12 years old,” Science, vol. 333, no. 6045, pp. 959–964, 2011.
[14]
E. A. Taylor and M. Rutter, Child and Adolescent Psychiatry, Blackwell Science, Oxford, UK, 2002.
[15]
A. R. Haig, E. Gordon, J. J. Wright, R. A. Meares, and H. Bahramali, “Synchronous cortical gamma-band activity in task-relevant cognition,” NeuroReport, vol. 11, no. 4, pp. 669–675, 2000.
[16]
M. A. Bell and C. D. Wolfe, “Changes in brain functioning from infancy to early childhood: evidence from EEG power and coherence during working memory tasks,” Developmental Neuropsychology, vol. 31, no. 1, pp. 21–38, 2007.
[17]
M. M. Swingler, M. T. Willoughby, and S. D. Calkins, “EEG power and coherence during preschoolers's performance of an executive function battery,” Developmental Psychobiology, vol. 53, no. 8, pp. 771–784, 2011.
[18]
W. Bosl, A. Tierney, H. Tager-Flusberg, and C. Nelson, “EEG complexity as a biomarker for autism spectrum disorder risk,” BMC Medicine, vol. 9, article 18, 2011.
[19]
I. Dinstein, K. Pierce, L. Eyler et al., “Disrupted neural synchronization in toddlers with autism,” Neuron, vol. 70, no. 6, pp. 1218–1225, 2011.
[20]
H. C. Hazlett, M. D. Poe, G. Gerig et al., “Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years,” Archives of General Psychiatry, vol. 68, no. 5, pp. 467–476, 2011.
[21]
D. W. Evans, K. Canavera, F. L. Kleinpeter, E. Maccubbin, and K. Taga, “The fears, phobias and anxieties of children with autism spectrum disorders and Down syndrome: comparisons with developmentally and chronologically age matched children,” Child Psychiatry and Human Development, vol. 36, no. 1, pp. 3–26, 2005.
[22]
K. Markram and H. Markram, “The intense world theory—a unifying theory of the neurobiology of autism,” Frontiers in Human Neuroscience, vol. 4, article 224, 2010.
[23]
F. Travis and J. Shear, “Focused attention, open monitoring and automatic self-transcending: categories to organize meditations from Vedic, Buddhist and Chinese traditions,” Consciousness and Cognition, vol. 19, no. 4, pp. 1110–1118, 2010.
[24]
R. J. Davidson, J. Kabat-Zinn, J. Schumacher et al., “Alterations in brain and immune function produced by mindfulness meditation,” Psychosomatic Medicine, vol. 65, no. 4, pp. 564–570, 2003.
[25]
E. Epel, J. Daubenmier, J. T. Moskowitz, S. Folkman, and E. Blackburn, “Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres,” Annals of the New York Academy of Sciences, vol. 1172, pp. 34–53, 2009.
[26]
T. W. W. Pace, L. T. Negi, D. D. Adame et al., “Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress,” Psychoneuroendocrinology, vol. 34, no. 1, pp. 87–98, 2009.
[27]
R. B. Effros, “Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress,” Experimental Gerontology, vol. 46, no. 2-3, pp. 135–140, 2011.
[28]
T. L. Jacobs, E. S. Epel, J. Lin et al., “Intensive meditation training, immune cell telomerase activity, and psychological mediators,” Psychoneuroendocrinology, vol. 36, no. 5, pp. 664–681, 2011.
[29]
D. S. Shannahoff-Khalsa, L. E. Ray, S. Levine, C. C. Gallen, B. J. Schwartz, and J. J. Sidorowich, “Randomized controlled trial of yogic meditation techniques for patients with obsessive-compulsive disorder,” CNS Spectrums, vol. 4, no. 12, pp. 34–47, 1999.
[30]
R. P. Brown and P. L. Gerbarg, “Sudarshan Kriya yogic breathing in the treatment of stress, anxiety, and depression: part I—neurophysiologic model,” Journal of Alternative and Complementary Medicine, vol. 11, no. 1, pp. 189–201, 2005.
[31]
J. E. Bormann, S. Becker, M. Gershwin et al., “Relationship of frequent mantram repetition to emotional and spiritual well-being in healthcare workers,” Journal of Continuing Education in Nursing, vol. 37, no. 5, pp. 218–224, 2006.
[32]
M. B. Ospina, K. Bond, M. Karkhaneh et al., “Clinical trials of meditation practices in health care: characteristics and quality,” Journal of Alternative and Complementary Medicine, vol. 14, no. 10, pp. 1199–1213, 2008.
[33]
S. I. Nidich, M. V. Rainforth, D. A. F. Haaga et al., “A randomized controlled trial on effects of the transcendental meditation program on blood pressure, psychological distress, and coping in young adults,” American Journal of Hypertension, vol. 22, no. 12, pp. 1326–1331, 2009.
[34]
Z. V. Segal, P. Bieling, T. Young et al., “Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression,” Archives of General Psychiatry, vol. 67, no. 12, pp. 1256–1264, 2010.
[35]
F. Zeidan, S. K. Johnson, N. S. Gordon, and P. Goolkasian, “Effects of brief and sham mindfulness meditation on mood and cardiovascular variables,” Journal of Alternative and Complementary Medicine, vol. 16, no. 8, pp. 867–873, 2010.
[36]
D. Orme-Johnson, “Evidence that the transcendental meditation program prevents or decreases diseases of the nervous system and is specifically beneficial for epilepsy,” Medical Hypotheses, vol. 67, no. 2, pp. 240–246, 2006.
[37]
J. Z. Rosenthal, S. Grosswald, R. Ross, and N. Rosenthal, “Effects of transcendental meditation in veterans of operation enduring freedom and operation Iraqi freedom with posttraumatic stress disorder: a pilot study,” Military Medicine, vol. 176, no. 6, pp. 626–630, 2011.
[38]
J. E. Bormann, A. L. Gifford, M. Shively et al., “Effects of spiritual mantram repetition on HIV outcomes: a randomized controlled trial,” Journal of Behavioral Medicine, vol. 29, no. 4, pp. 359–376, 2006.
[39]
D. W. Orme-Johnson, R. H. Schneider, Y. D. Son, S. Nidich, and Z. H. Cho, “Neuroimaging of meditation's effect on brain reactivity to pain,” NeuroReport, vol. 17, no. 12, pp. 1359–1363, 2006.
[40]
F. Zeidan, K. T. Martucci, R. A. Kraft, N. S. Gordon, J. G. Mchaffie, and R. C. Coghill, “Brain mechanisms supporting the modulation of pain by mindfulness meditation,” Journal of Neuroscience, vol. 31, no. 14, pp. 5540–5548, 2011.
[41]
C. E. F. Brayant, The Yoga Sutras of Pata?jali, North Point Press, 2009.
[42]
E. Easwaran, Essence of the Upanishads: A Key to Indian Spirituality, Nilgiri Press, 2009.
[43]
R. Griffith, The Rig-Veda, Evinity Publishing, 2009.
[44]
V. Bandhu, A Vedic Word-Concordance, Vishveshvaranand Vedic Research Institute, 1995.
[45]
H. U. P. A. M. Franceschini, “Bloomfield's 1906 A Vedic Concordance,” 2005, http://www.people.fas.harvard.edu/~witzel/VedicConcordance/ReadmeEng.html.
[46]
T. Nader, Ramayan in Human Physiology, Maharishi University of Management Press, 2011.
[47]
D. Shannahoff-Khalsa, Kundalini Yoga Meditation for Complex Psychiatric Disorders: Techniques Specific for Treating the Psychoses, Personality, and Pervasive Developmental Disorders, W. W. Norton & Company, New York, NY, USA, 2010.
[48]
L. A. Schmidt, L. J. Trainor, and D. L. Santesso, “Development of frontal electroencephalogram (EEG) and heart rate (ECG) responses to affective musical stimuli during the first 12 months of post-natal life,” Brain and Cognition, vol. 52, no. 1, pp. 27–32, 2003.
[49]
M. Iacoboni and M. Dapretto, “The mirror neuron system and the consequences of its dysfunction,” Nature Reviews Neuroscience, vol. 7, no. 12, pp. 942–951, 2006.
[50]
J. H. G. Williams, A. Whiten, T. Suddendorf, and D. I. Perrett, “Imitation, mirror neurons and autism,” Neuroscience and Biobehavioral Reviews, vol. 25, no. 4, pp. 287–295, 2001.
[51]
L. M. Oberman, E. M. Hubbard, J. P. McCleery, E. L. Altschuler, V. S. Ramachandran, and J. A. Pineda, “EEG evidence for mirror neuron dysfunction in autism spectrum disorders,” Cognitive Brain Research, vol. 24, no. 2, pp. 190–198, 2005.
[52]
N. Hadjikhani, R. M. Joseph, J. Snyder, and H. Tager-Flusberg, “Anatomical differences in the mirror neuron system and social cognition network in autism,” Cerebral Cortex, vol. 16, no. 9, pp. 1276–1282, 2006.
[53]
L. M. Oberman, V. S. Ramachandran, and J. A. Pineda, “Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis,” Neuropsychologia, vol. 46, no. 5, pp. 1558–1565, 2008.
[54]
M. Schulte-Ruther, E. Greimel, H. J. Markowitsch et al., “Dysfunctions in brain networks supporting empathy: an fMRI study in adults with autism spectrum disorders,” Social Neuroscience, vol. 6, no. 1, pp. 1–21, 2011.
[55]
V. S. Ramachandran and E. L. Seckel, “Synchronized dance therapy to stimulate mirror neurons in autism,” Medical Hypotheses, vol. 76, no. 1, pp. 150–151, 2011.
[56]
S. Baron-Cohen, A. M. Leslie, and U. Frith, “Does the autistic child have a “theory of mind”?” Cognition, vol. 21, no. 1, pp. 37–46, 1985.
[57]
S. Baron-Cohen, H. A. Ring, E. T. Bullmore, S. Wheelwright, C. Ashwin, and S. C. R. Williams, “The amygdala theory of autism,” Neuroscience and Biobehavioral Reviews, vol. 24, no. 3, pp. 355–364, 2000.
[58]
M. V. Lombardo, J. L. Barnes, S. J. Wheelwright, and S. Baron-Cohen, “Self-referential cognition and empathy in austism,” PLoS ONE, vol. 2, no. 9, article e883, 2007.
[59]
E. Greimel, M. Schulte-Ruther, T. Kircher et al., “Neural mechanisms of empathy in adolescents with autism spectrum disorder and their fathers,” NeuroImage, vol. 49, no. 1, pp. 1055–1065, 2010.
[60]
A. B. Newberg, N. Wintering, D. S. Khalsa, H. Roggenkamp, and M. R. Waldman, “Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: a preliminary study,” Journal of Alzheimer 's Disease, vol. 20, no. 2, pp. 517–526, 2010.
[61]
E. Luders, K. L. Narr, P. M. Thompson, and A. W. Toga, “Neuroanatomical correlates of intelligence,” Intelligence, vol. 37, no. 2, pp. 156–163, 2009.
[62]
K. L. Narr, R. P. Woods, P. M. Thompson et al., “Relationships between IQ and regional cortical gray matter thickness in healthy adults,” Cerebral Cortex, vol. 17, no. 9, pp. 2163–2171, 2007.
[63]
E. T. Westlye, A. Lundervold, H. Rootwelt, A. J. Lundervold, and L. T. Westlye, “Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance,” Journal of Neuroscience, vol. 31, no. 21, pp. 7775–7783, 2011.
[64]
M. Weinstein, L. Ben-Sira, Y. Levy et al., “Abnormal white matter integrity in young children with autism,” Human Brain Mapping, vol. 32, no. 4, pp. 534–543, 2011.
[65]
J. R. Hughes, “Autism: the first firm finding = underconnectivity?” Epilepsy and Behavior, vol. 11, no. 1, pp. 20–24, 2007.
[66]
G. L. Wallace, N. Dankner, L. Kenworthy, J. N. Giedd, and A. Martin, “Age-related temporal and parietal cortical thinning in autism spectrum disorders,” Brain, vol. 133, no. 12, pp. 3745–3754, 2010.
[67]
M. L. Bauman and T. L. Kemper, “Neuroanatomic observations of the brain in autism: a review and future directions,” International Journal of Developmental Neuroscience, vol. 23, no. 2-3, pp. 183–187, 2005.
[68]
S. M. Wolosin, M. E. Richardson, J. G. Hennessey, M. B. Denckla, and S. H. Mostofsky, “Abnormal cerebral cortex structure in children with ADHD,” Human Brain Mapping, vol. 30, no. 1, pp. 175–184, 2009.
[69]
T. Jubault, J. F. Gagnon, S. Karama et al., “Patterns of cortical thickness and surface area in early Parkinson's disease,” NeuroImage, vol. 55, no. 2, pp. 462–467, 2011.
[70]
M. Schulte-Ruther, H. J. Markowitsch, G. R. Fink, and M. Piefke, “Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy,” Journal of Cognitive Neuroscience, vol. 19, no. 8, pp. 1354–1372, 2007.
[71]
A. Mizuno, Y. Liu, D. L. Williams, et al., “The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism,” Brain, vol. 134, no. 8, pp. 2422–2435, 2011.
[72]
T. A. Avino and J. J. Hutsler, “Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders,” Brain Research, vol. 1360, pp. 138–146, 2010.
[73]
C. N. Vidal, R. Nicolson, T. J. DeVito et al., “Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity,” Biological Psychiatry, vol. 60, no. 3, pp. 218–225, 2006.
[74]
J. Schatz and R. Buzan, “Decreased corpus callosum size in sickle cell disease: relationship with cerebral infarcts and cognitive functioning,” Journal of the International Neuropsychological Society, vol. 12, no. 1, pp. 24–33, 2006.
[75]
L. Mottron, M. Dawson, I. Soulières, B. Hubert, and J. Burack, “Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 27–43, 2006.
[76]
B. Gepner and F. Feron, “Autism: a world changing too fast for a mis-wired brain?” Neuroscience and Biobehavioral Reviews, vol. 33, no. 8, pp. 1227–1242, 2009.
[77]
S. Wass, “Distortions and disconnections: disrupted brain connectivity in autism,” Brain and Cognition, vol. 75, no. 1, pp. 18–28, 2011.
[78]
M. A. O'Riordan, K. C. Plaisted, J. Driver, and S. Baron-Cohen, “Superior visual search in autism,” Journal of Experimental Psychology, vol. 27, no. 3, pp. 719–730, 2001.
[79]
A. Bonnel, L. Mottron, I. Peretz, M. Trudel, E. Gallun, and A. M. Bonnel, “Enhanced pitch sensitivity in individuals with autism: a signal detection analysis,” Journal of Cognitive Neuroscience, vol. 15, no. 2, pp. 226–235, 2003.
[80]
J. M. Foxton, M. E. Stewart, L. Barnard et al., “Absence of auditory “global interference” in autism,” Brain, vol. 126, no. 12, pp. 2703–2709, 2003.
[81]
K. Markram, T. Rinaldi, D. L. Mendola, C. Sandi, and H. Markram, “Abnormal fear conditioning and amygdala processing in an animal model of autism,” Neuropsychopharmacology, vol. 33, no. 4, pp. 901–912, 2008.
[82]
T. Rinaldi, C. Perrodin, and H. Markram, “Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism,” Frontiers in Neural Circuits, vol. 2, article 4, 2008.
[83]
X. Ming, P. O. Julu, M. Brimacombe, S. Connor, and M. L. Daniels, “Reduced cardiac parasympathetic activity in children with autism,” Brain and Development, vol. 27, no. 7, pp. 509–516, 2005.
[84]
B. A. Corbett, S. Mendoza, M. Abdullah, J. A. Wegelin, and S. Levine, “Cortisol circadian rhythms and response to stress in children with autism,” Psychoneuroendocrinology, vol. 31, no. 1, pp. 59–68, 2006.
[85]
S. H. Fatemi, A. R. Halt, G. Realmuto et al., “Purkinje cell size is reduced in cerebellum of patients with autism,” Cellular and Molecular Neurobiology, vol. 22, no. 2, pp. 171–175, 2002.
[86]
G. Allen and E. Courchesne, “Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism,” American Journal of Psychiatry, vol. 160, no. 2, pp. 262–273, 2003.
[87]
A. J. Silva, R. Paylor, J. M. Wehner, and S. Tonegawa, “Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice,” Science, vol. 257, no. 5067, pp. 206–211, 1992.
[88]
A. J. Silva, C. F. Stevens, S. Tonegawa, and Y. Wang, “Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice,” Science, vol. 257, no. 5067, pp. 201–206, 1992.
[89]
C. M. Durand, C. Betancur, T. M. Boeckers et al., “Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders,” Nature Genetics, vol. 39, no. 1, pp. 25–27, 2007.
[90]
C. Zhang, J. M. Milunsky, S. Newton et al., “A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export,” Journal of Neuroscience, vol. 29, no. 35, pp. 10843–10854, 2009.
[91]
J. Giza, M. J. Urbanski, F. Prestori et al., “Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2,” Journal of Neuroscience, vol. 30, no. 44, pp. 14805–14816, 2010.
[92]
M. R. Etherton, K. Tabuchi, M. Sharma, J. Ko, and T. C. Südhof, “An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus,” The EMBO Journal, vol. 30, no. 14, pp. 2908–2919, 2011.
[93]
D. A. Rossignol, “Novel and emerging treatments for autism spectrum disorders: a systematic review.,” Annals of Clinical Psychiatry, vol. 21, no. 4, pp. 213–236, 2009.
[94]
C. H. Kroenke, E. Epel, N. Adler, et al., “Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children,” Psychosomatic Medicine, vol. 73, no. 7, pp. 533–540, 2011.
[95]
G. Kaati, L. O. Bygren, M. Pembrey, and M. Sj?str?m, “Transgenerational response to nutrition, early life circumstances and longevity,” European Journal of Human Genetics, vol. 15, no. 7, pp. 784–790, 2007.
[96]
T. L. Roth, F. D. Lubin, A. J. Funk, and J. D. Sweatt, “Lasting epigenetic influence of early-life adversity on the BDNF gene,” Biological Psychiatry, vol. 65, no. 9, pp. 760–769, 2009.
[97]
N. S. C. O. T. D. Child, “Early Experiences Can Alter Gene Expression and Affect Long-Term Development,” National Scientific Council on the Developing Child, Working Paper No. 10, 2010, http://developingchild.harvard.edu/.
[98]
A. Harris and J. Seckl, “Glucocorticoids, prenatal stress and the programming of disease,” Hormones and Behavior, vol. 59, no. 3, pp. 279–289, 2011.
[99]
S. Cohen, D. Janicki-Deverts, and G. E. Miller, “Psychological stress and disease,” Journal of the American Medical Association, vol. 298, no. 14, pp. 1685–1687, 2007.
[100]
M. Cebioglu, H. H. Schild, and O. Golubnitschaja, “Diabetes mellitus as a risk factor for cancer: stress or viral etiology?” Infectious Disorders, vol. 8, no. 2, pp. 76–87, 2008.
[101]
O. W. Wolkowitz, E. S. Epel, V. I. Reus, and S. H. Mellon, “Depression gets old fast: do stress and depression accelerate cell aging?” Depression and Anxiety, vol. 27, no. 4, pp. 327–338, 2010.
[102]
P. G. Green, X. Chen, P. Alvarez, et al., “Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat,” Pain, vol. 152, no. 11, pp. 2549–2556, 2011.
[103]
T. E. Peters and G. K. Fritz, “Psychological considerations of the child with asthma,” Pediatric Clinics of North America, vol. 58, no. 4, pp. 921–935, 2011.
[104]
J. Needham and L. Wang, Science and Civilisation in China, Cambridge University Press, 1954.
[105]
C. M. Tipton, “Susruta of India, an unrecognized contributor to the history of exercise physiology,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1553–1556, 2008.
[106]
C. Shang, “Emerging paradigms in mind-body medicine,” Journal of Alternative and Complementary Medicine, vol. 7, no. 1, pp. 83–91, 2001.
[107]
A. Russo, J. Jiang, and M. Barrett, Trends in Potentially Preventable Hospitalizations among Adults and Children, Healthcare Cost and Utilization Project (HCUP) Statistical Briefs, Agency for Health Care Policy and Research (US), 2006.
[108]
N. N. K. Anderson, S. Breckler, D. Ballard, et al., “Stress in America,” APA report, 2009.
[109]
Lancet-Editorial, “China's major health challenge: control of chronic diseases,” The Lancet, vol. 378, no. 9790, article 457, 2011.
[110]
S. Reardon, “A world of chronic disease,” Science, vol. 333, no. 6042, pp. 558–559, 2011.
[111]
O. S. Jesner, M. Aref-Adib, and E. Coren, “Risperidone for autism spectrum disorder,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD005040, 2007.
[112]
C. U. Correll, C. J. Kratochvil, and J. S. March, “Developments in pediatric psychopharmacology: focus on stimulants, antidepressants, and antipsychotics,” Journal of Clinical Psychiatry, vol. 72, no. 5, pp. 655–670, 2011.
[113]
K. Moroz, “The effects of psychological trauma on children and adolescents,” Report, Department of Health, 2005.
[114]
M. J. Essex, W. Thomas Boyce, C. Hertzman, et al., “Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence,” Child Development. In press.
[115]
J. P. Shonkoff, “Protecting brains, not simply stimulating minds,” Science, vol. 333, no. 6045, pp. 982–983, 2011.
[116]
J. H. Austin, Zen and the Brain: Toward an Understanding of Meditation and Consciousness, MIT Press, Cambridge, Mass, USA, 1998.
[117]
A. Lutz, H. A. Slagter, J. D. Dunne, and R. J. Davidson, “Attention regulation and monitoring in meditation,” Trends in Cognitive Sciences, vol. 12, no. 4, pp. 163–169, 2008.
[118]
Z. Josipovic, “Duality and nonduality in meditation research,” Consciousness and Cognition, vol. 19, no. 4, pp. 1119–1121, 2010.
[119]
Y. Kubota, W. Sato, M. Toichi et al., “Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure,” Cognitive Brain Research, vol. 11, no. 2, pp. 281–287, 2001.
[120]
B. R. Cahn, A. Delorme, and J. Polich, “Occipital gamma activation during Vipassana meditation,” Cognitive Processing, vol. 11, no. 1, pp. 39–56, 2010.
[121]
C. E. Kerr, S. R. Jones, Q. Wan et al., “Effects of mindfulness meditation training on anticipatory α modulation in primary somatosensory cortex,” Brain Research Bulletin, vol. 85, no. 3-4, pp. 96–103, 2011.
[122]
A. Lutz, L. L. Greischar, N. B. Rawlings, M. Ricard, and R. J. Davidson, “Long-term meditators self-induce high-amplitude gamma synchrony during mental practice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 46, pp. 16369–16373, 2004.
[123]
F. Travis, D. A. F. Haaga, J. Hagelin et al., “A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and transcendental meditation practice,” Cognitive Processing, vol. 11, no. 1, pp. 21–30, 2010.
[124]
J. Levry, Kabbalah & Naam Yoga Self-Study Course, Rootlight, 2000.
[125]
J. Levry, Effective Healing Techniques for this Age and Beyond, Rootlight I, 2010.
[126]
S. Dane and N. Balci, “Handedness, eyedness and nasal cycle in children with autism,” International Journal of Developmental Neuroscience, vol. 25, no. 4, pp. 223–226, 2007.
[127]
D. S. Shannahoff-Khalsa, “Selective unilateral autonomic activation: implications for psychiatry,” CNS Spectrums, vol. 12, no. 8, pp. 625–634, 2007.
[128]
R. P. Brown and P. L. Gerbarg, “Yoga breathing, meditation, and longevity,” Annals of the New York Academy of Sciences, vol. 1172, pp. 54–62, 2009.
[129]
G. van Wingen, C. Mattern, R. J. Verkes, J. Buitelaar, and G. Fernández, “Testosterone reduces amygdala-orbitofrontal cortex coupling,” Psychoneuroendocrinology, vol. 35, no. 1, pp. 105–113, 2010.
[130]
D. W. Pfaff, I. Rapin, and S. Goldman, “Male predominance in autism: neuroendocrine influences on arousal and social anxiety,” Autism Research, vol. 4, no. 3, pp. 163–176, 2011.
[131]
A. J. Guastella, S. L. Einfeld, K. M. Gray et al., “Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders,” Biological Psychiatry, vol. 67, no. 7, pp. 692–694, 2010.
[132]
F. Travis, D. A. F. Haaga, J. Hagelin et al., “Effects of transcendental meditation practice on brain functioning and stress reactivity in college students,” International Journal of Psychophysiology, vol. 71, no. 2, pp. 170–176, 2009.
[133]
S. W. Lazar, C. E. Kerr, R. H. Wasserman et al., “Meditation experience is associated with increased cortical thickness,” NeuroReport, vol. 16, no. 17, pp. 1893–1897, 2005.
[134]
B. K. Holzel, J. Carmody, M. Vangel et al., “Mindfulness practice leads to increases in regional brain gray matter density,” Psychiatry Research, vol. 191, no. 1, pp. 36–43, 2011.
[135]
C. R. K. MacLean, K. G. Walton, S. R. Wenneberg et al., “Effects of the transcendental meditation program on adaptive mechanisms: changes in hormone levels and responses to stress after 4 months of practice,” Psychoneuroendocrinology, vol. 22, no. 4, pp. 277–295, 1997.
[136]
T. W. Kjaer, C. Bertelsen, P. Piccini, D. Brooks, J. Alving, and H. C. Lou, “Increased dopamine tone during meditation-induced change of consciousness,” Cognitive Brain Research, vol. 13, no. 2, pp. 255–259, 2002.
[137]
S. E. Johnstone and S. B. Baylin, “Stress and the epigenetic landscape: a link to the pathobiology of human diseases?” Nature Reviews Genetics, vol. 11, no. 11, pp. 806–812, 2010.
[138]
G. L. Xiong and P. M. Doraiswamy, “Does meditation enhance cognition and brain plasticity?” Annals of the New York Academy of Sciences, vol. 1172, pp. 63–69, 2009.
[139]
U. Will and E. Berg, “Brain wave synchronization and entrainment to periodic acoustic stimuli,” Neuroscience Letters, vol. 424, no. 1, pp. 55–60, 2007.
[140]
K. J. Jeffries, J. B. Fritz, and A. R. Braun, “Words in melody: an H215O PET study of brain activation during singing and speaking,” NeuroReport, vol. 14, no. 5, pp. 749–754, 2003.
[141]
D. E. Callan, V. Tsytsarev, T. Hanakawa et al., “Song and speech: brain regions involved with perception and covert production,” NeuroImage, vol. 31, no. 3, pp. 1327–1342, 2006.
[142]
D. Schon, R. Gordon, A. Campagne et al., “Similar cerebral networks in language, music and song perception,” NeuroImage, vol. 51, no. 1, pp. 450–461, 2010.
[143]
L. Bernardi, P. Sleight, G. Bandinelli et al., “Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study,” British Medical Journal, vol. 323, no. 7327, pp. 1446–1449, 2001.
[144]
D. S. Khalsa, D. Amen, C. Hanks, N. Money, and A. Newberg, “Cerebral blood flow changes during chanting meditation,” Nuclear Medicine Communications, vol. 30, no. 12, pp. 956–961, 2009.