Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively. Introduction While traditional methods in chemical processes have improved in the last decades, extensive attention has been paid to alternative techniques that utilize enzymes involving excellent characteristics, such as high activity, selectivity, and specificity. In addition, enzymes action at mild conditions of pH, pressure, and temperature proposes them as candidates for suitable catalysts in industries where low cost, energy savings, and simplicity are important [1, 2]. However, despite these advantages, some practical problems restrict their use, such as the high-cost isolation and purification process and instability in organic media and high temperatures. To overcome these limitations, several methods have been suggested and the most important of which are immobilization techniques [3, 4]. Enzyme entrapment uses natural and synthetic polymers, such as agarose, agar, and gelatin, through thermoreversal polymerization alginate, polyvinyl acetate, acrylic acid, and β-carrageenan by ionotropic gelation [5]. Gelatin consists of proteins and peptides produced by the denaturation of collagen, which breaks down into smaller fragments. Due to its unique physical properties, such as a melting point close to physiological temperature, gelatin is used in a variety of applications, especially in the food and pharmaceutical industries [6]. Gelatin immobilization methods have been developed for entrapment of microbial cells and enzymes, especially when the enzyme is placed in a whole cell. While the gelation process is reversible with temperature and displays no efficient immobilization, other than at 30–35°C, some methods have been
References
[1]
Z. Konsoula and M. Liakopoulou-Kyriakides, “Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules,” Enzyme and Microbial Technology, vol. 39, no. 4, pp. 690–696, 2006.
[2]
C. Silva, C. J. Silva, A. Zille, G. M. Guebitz, and A. Cavaco-Paulo, “Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres,” Enzyme and Microbial Technology, vol. 41, no. 6-7, pp. 867–875, 2007.
[3]
G. D. Altun and S. A. Cetinus, “Immobilization of pepsin on chitosan beads,” Food Chemistry, vol. 100, no. 3, pp. 964–971, 2007.
[4]
F. Van De Velde, N. D. Louren?o, H. M. Pinheiro, and M. Bakker, “Carrageenan: a food-grade and biocompatible support for immobilization techniques,” Advanced Synthesis and Catalysis, vol. 344, no. 8, pp. 815–835, 2002.
[5]
S. M. Kotwal and V. Shankar, “Immobilized invertase,” Biotechnology Advances, vol. 27, no. 4, pp. 311–322, 2009.
[6]
C. Joly-Duhamel, D. Hellio, and M. Djabourov, “All gelatin networks: 1. Biodiversity and physical chemistry,” Langmuir, vol. 18, no. 19, pp. 7208–7217, 2002.
[7]
L. J. Yang and Y. C. Ou, “The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture,” Lab on a Chip, vol. 5, no. 9, pp. 979–984, 2005.
[8]
A. Tanriseven and S. Do?an, “A novel method for the immobilization of β-galactosidase,” Process Biochemistry, vol. 38, no. 1, pp. 27–30, 2002.
[9]
S. Birnbaum, R. Pendleton, P. O. Larsson, and K. Mosbach, “Covalent stabilization of alginate gel for the entrapment of living whole cells,” Biotechnology Letters, vol. 3, no. 8, pp. 393–400, 1981.
[10]
H. Forootanfar, M. A. Faramarzi, A. R. Shahverdi, and M. T. Yazdi, “Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile,” Bioresource Technology, vol. 102, no. 2, pp. 1808–1814, 2011.
[11]
H. Forootanfar, M. M. Movahednia, S. Yaghmaei et al., “Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase,” Journal of Hazardous Materials, vol. 209-210, pp. 199–203, 2012.
[12]
S. R. Couto and J. L. T. Herrera, “Industrial and biotechnological applications of laccases: a review,” Biotechnology Advances, vol. 24, no. 5, pp. 500–513, 2006.
[13]
M. Chivukula and V. Renganathan, “Phenolic azo dye oxidation by laccase from Pyricularia oryzae,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4374–4377, 1995.
[14]
A. Kunamneni, I. Ghazi, S. Camarero, A. Ballesteros, F. J. Plou, and M. Alcalde, “Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers,” Process Biochemistry, vol. 43, no. 2, pp. 169–178, 2008.
[15]
G. K. Parshetti, A. A. Telke, D. C. Kalyani, and S. P. Govindwar, “Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532,” Journal of Hazardous Materials, vol. 176, no. 1–3, pp. 503–509, 2010.
[16]
H. J. Fan, S. T. Huang, W. H. Chung, J. L. Jan, W. Y. Lin, and C. C. Chen, “Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification,” Journal of Hazardous Materials, vol. 171, no. 1–3, pp. 1032–1044, 2009.
[17]
M. A. Faramarzi and H. Forootanfar, “Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile,” Colloids and Surfaces B, vol. 87, no. 1, pp. 23–27, 2011.
[18]
M. Aghaie-Khouzani, H. Forootanfar, M. Moshfegh, M. R. Khoshayand, and M. A. Faramarzi, “Decolorization of some synthetic dyes using optimized culture broth of laccase producing ascomycete Paraconiothyrium variabile,” Biochemical Engineering Journal, vol. 60, no. 1, pp. 9–15, 2012.
[19]
M. Panouillé and V. Larreta-Garde, “Gelation behaviour of gelatin and alginate mixtures,” Food Hydrocolloids, vol. 23, no. 4, pp. 1074–1080, 2009.
[20]
M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[21]
A. K. Anal and W. F. Stevens, “Chitosan-alginate multilayer beads for controlled release of ampicillin,” International Journal of Pharmaceutics, vol. 290, no. 1-2, pp. 45–54, 2005.
[22]
J. P. Chen and Y. S. Lin, “Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate-silicate sol-gel beads,” Process Biochemistry, vol. 42, no. 6, pp. 934–942, 2007.
[23]
X. Hu, X. Zhao, and H. M. Hwang, “Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite,” Chemosphere, vol. 66, no. 9, pp. 1618–1626, 2007.
[24]
G. Hublik and F. Schinner, “Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants,” Enzyme and Microbial Technology, vol. 27, no. 3–5, pp. 330–336, 2000.
[25]
X. Q. Yang, X. X. Zhao, C. Y. Liu, Y. Zheng, and S. J. Qian, “Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase,” Process Biochemistry, vol. 44, no. 10, pp. 1185–1189, 2009.
[26]
G. K. Parshetti, S. G. Parshetti, A. A. Telke, D. C. Kalyani, R. A. Doong, and S. P. Govindwar, “Biodegradation of crystal violet by Agrobacterium radiobacter,” Journal of Environmental Sciences, vol. 23, no. 8, pp. 1384–1393, 2011.
[27]
K. Selvam, K. Swaminathan, and K. S. Chae, “Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp,” Bioresource Technology, vol. 88, no. 2, pp. 115–119, 2003.
[28]
D. Yinghui, W. Qiuling, and F. Shiyu, “Laccase stabilization by covalent binding immobilization on activated polyvinyl alcohol carrier,” Letters in Applied Microbiology, vol. 35, no. 6, pp. 451–456, 2002.
[29]
N. Vishal Gupta, D. V. Gowda, V. Balamuralidhara, and S. Mohammed Khan, “Formulation and evaluation of olanzapine matrix pellets for controlled release,” DARU, Journal of Pharmaceutical Sciences, vol. 19, no. 4, pp. 249–256, 2011.
[30]
F. G. Mutti, R. Pievo, M. Sgobba, M. Gullotti, and L. Santagostini, “Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on D-(+)-catechin and L-(?)-epicatechin with copper complexes,” Bioinorganic Chemistry and Applications, vol. 2008, Article ID 762029, 9 pages, 2008.
[31]
H. Y. Xiao, J. Huang, C. Liu, and D. S. Jiang, “Immobilization of laccase on amine-terminated magnetic nano-composite by glutaraldehyde crosslinking method,” Transactions of Nonferrous Metals Society of China, vol. 16, supplement 1, pp. s414–s418, 2006.