Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. 1. Introduction Schiff bases have often been used as chelating ligands in the field of coordination chemistry, and their metal complexes have been of great interest to researchers for many years. It is well known that N and S atoms play a key role in the coordination of metals at the active sites of many metallobiomolecules [1]. The importance of metal ions in biological systems is well established. One of the most interesting features of metal-coordinated systems is the concerted spatial arrangement of the ligands around the metal ion. Among metal ions of biological importance, the Cu(II) ion involved in a large number of distorted complexes [2]. Over the past two decades, considerable attention has been paid to metal complexes of Schiff bases containing nitrogen and other donor atoms [3, 4]. Bioorganometallic chemistry is dedicated to the study of metallic complexes and their biological applications [5], including the design of new drugs that are more effective than those already known. The development of the field of bioinorganic chemistry has increased the interest in Schiff base complexes, because it has been recognized that many of these complexes may serve as models for biologically important species [6–9]. Antioxidants are extensively studied for their capacity to protect organisms and cells from damage induced by oxidative stress. Scientists in various disciplines have become more interested in new compounds, either synthesized or obtained from natural sources, that could provide active components to prevent or reduce the impact of oxidative stress on cells [10]. Thiosemicarbazones are well established as an important class of sulfur-donor Schiff base ligands that are particularly useful for transition metal ions. This is due to the remarkable biological activities observed for these compounds, which have been shown to be related to their
References
[1]
K. Singh, M. S. Barwa, and P. Tyagi, “Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone,” European Journal of Medicinal Chemistry, vol. 41, no. 1, pp. 147–153, 2006.
[2]
J. A. Obaleye, J. F. Adediji, and M. A. Adebayo, “Synthesis and biological activities on metal complexes of 2,5-diamino-1,3,4-thiadiazole derived from semicarbazide hydrochloride,” Molecules, vol. 16, no. 7, pp. 5861–5874, 2011.
[3]
X. Tai, X. Yin, Q. Chen, and M. Tan, “Synthesis of some transition metal complexes of a novel Schiff base ligand derived from 2,2′-bis(p-methoxyphenylamine) and salicylicaldehyde,” Molecules, vol. 8, no. 5, pp. 439–443, 2003.
[4]
A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, and M. S. Takriff, “Antimicrobial and antioxidant activities of new metal complexes derived from 3-aminocoumarin,” Molecules, vol. 16, no. 8, pp. 6969–6984, 2011.
[5]
A. Corona-Bustamante, J. M. Viveros-Paredes, A. Flores-Parra et al., “Antioxidant activity of butyl- and phenylstannoxanes derived from 2-, 3- and 4-pyridinecarboxylic acids,” Molecules, vol. 15, no. 8, pp. 5445–5459, 2010.
[6]
N. H. Al-Sha'alan, “Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety,” Molecules, vol. 12, no. 5, pp. 1080–1091, 2007.
[7]
S. Chandra, D. Jain, A. K. Sharma, and P. Sharma, “Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies,” Molecules, vol. 14, no. 1, pp. 174–190, 2009.
[8]
K. S. Prasad, L. S. Kumar, M. Prasad, and H. D. Revanasiddappa, “Novel organotin(IV)-Schiff base complexes: synthesis, characterization, antimicrobial activity, and DNA interaction studies,” Bioinorganic Chemistry and Applications, vol. 2010, Article ID 854514, 9 pages, 2010.
[9]
H. L. Singh and A. K. Varshney, “Synthetic, structural, and biochemical studies of organotin(IV) with Schiff bases having nitrogen and sulphur donor ligands,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 23245, 7 pages, 2006.
[10]
M. Alkan, H. Yüksek, ?. Gürsoy-Kol, and M. Calapo?lu, “Synthesis, acidity and antioxidant properties of some novel 3,4-disubstituted-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives,” Molecules, vol. 13, no. 1, pp. 107–121, 2008.
[11]
K. S. Abou-Melha and H. Faruk, “Bimetallic complexes of schiff base bis-[4-hydroxycuomarin-3-yl]- 1N,5N-thiocarbohydrazone as a potentially dibasic pentadentate ligand. Synthesis, spectral, and antimicrobial properties,” Journal of the Iranian Chemical Society, vol. 5, no. 1, pp. 122–134, 2008.
[12]
A. A. Al-Amiery, Y. K. Al-Majedy, H. Abdulreazak, and H. Abood, “Synthesis, characterization, theoretical crystal structure, and antibacterial activities of some transition metal complexes of the thiosemicarbazone (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide,” Bioinorganic Chemistry and Applications, vol. 2011, Article ID 483101, 6 pages, 2011.
[13]
A. A. H. Kadhum, A. A. Al-Amiery, A. Y. Musa, and A. B. Mohamad, “The antioxidant activity of new coumarin derivatives,” International Journal of Molecular Sciences, vol. 12, no. 9, pp. 5747–5761, 2011.
[14]
Z. Y. Daw, G. S. EL-Baroty, and A. E. Mahmoud, “Inhibition of Aspergillus parasiticus growth and aflatoxin production by some essential oils,” Chemie, Mikrobiologie, Technologie der Lebensmittel, vol. 16, pp. 129–135, 1994.
[15]
S. Myiut, W. R. W. Daud, A. B. Mohamed, and A. A. H. Kadhum, “Gas chromatographic determination of eugenol in ethanolextract of cloves,” Journal of Chromatography B, vol. 76, pp. 193–195, 1996.
[16]
A. A. Al-Amiery, “Antimicrobial and antioxidant activities of new metal complexes derived from (E)-3-((5-phenyl-1,3,4-oxadiazol-2-ylimino)methyl)naphthalen-2-ol,” Medicinal Chemistry Research. In press.
[17]
Y. Chen, M. Wang, R. T. Rosen, and C. T. Ho, “2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb,” Journal of Agricultural and Food Chemistry, vol. 47, no. 6, pp. 2226–2228, 1999.
[18]
A. A. Al-Amiery, R. I. Al-Bayati, K. Y. Saour, and M. F. Radi, “Cytotoxicity, antioxidant and antimicrobial activities of novel 2-quinolone derivatives derived from coumarin,” Research on Chemical Intermediates. In press.
[19]
A. B. P. Lever, Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, NY, USA, 1984.
[20]
I. Pal, F. Basuli, and S. Bhattacharya, “Thiosemicarbazone complexes of the platinum metals. A story of variable coordination modes,” Proceedings of the Indian Academy of Sciences: Chemical Sciences, vol. 114, no. 4, pp. 255–268, 2002.
[21]
Y. Anjaneyula and R. P. Rao, “Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 16, pp. 257–272, 1986.
[22]
Z. H. Chohan, M. Arif, M. A. Akhtar, and C. T. Supuran, “Metal-based antibacterial and antifungal agents: synthesis, characterization, and in vitro biological evaluation of Co(II), Cu(II), Ni(II), and Zn(II) complexes with amino acid-derived compounds,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 83131, 13 pages, 2006.
[23]
Z. H. Chohan, A. Scozzafava, and C. T. Supuran, “Zinc complexes of benzothiazole-derived Schiff bases with antibacterial activity,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 18, no. 3, pp. 259–263, 2003.
[24]
K. S. Prasad, L. S. Kumar, S. C. Shekar, M. Prasad, and H. D. Revanasiddappa, “Oxovanadium complexes with bidentate N, O ligands: synthesis, characterization, DNA binding, nuclease activity and antimicrobial studies,” Chemical Sciences Journal, vol. 12, pp. 1–10, 2011.
[25]
T. D. Thangadurai and K. Natarajan, “Mixed ligand complexes of ruthenium(II) containing α,β-unsaturated-β-ketoamines and their antibacterial activity,” Transition Metal Chemistry, vol. 26, no. 4-5, pp. 500–504, 2001.
[26]
N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 105–109, 2001.
[27]
R. Joseyphus and M. Nair, “Antibacterial and antifungal studies on some schiff base complexes of zinc(II),” Mycobiology, vol. 36, pp. 93–98, 2008.
[28]
L. Malhota, S. Kumar, K. S. Dhindsa, et al., “Synthesis, characterization and microbial activity of Co(II), Ni(II), Cu(II) and Zn(II) complexes of aryloxyacetic acid and hydrazides,” Indian Journal of Chemistry Section A, vol. 32, pp. 457–459, 1993.
[29]
J. R. Soares, T. C. P. Dinis, A. P. Cunha, and L. M. Almeida, “Antioxidant activities of some extracts of Thymus zygis,” Free Radical Research, vol. 26, no. 5, pp. 469–478, 1997.
[30]
P. D. Duh, Y. Y. Tu, and G. C. Yen, “Antioxidant activity of water extract of Harng Jyur (Chyrsanthemum morifolium Ramat),” Lebensmittel-Wissenschaft und-Technologie, vol. 32, no. 5, pp. 269–277, 1999.
[31]
B. Matth?us, “Antioxidant activity of extracts obtained from residues of different oilseeds,” Journal of Agricultural and Food Chemistry, vol. 50, no. 12, pp. 3444–3452, 2002.
[32]
S. B. Bukhari, S. Memon, M. Mahroof-Tahir, and M. I. Bhanger, “Synthesis, characterization and antioxidant activity copper-quercetin complex,” Spectrochimica Acta Part A, vol. 71, no. 5, pp. 1901–1906, 2009.
[33]
J. Gabrielska, M. Soczyńska-Kordala, J. H?adyszowski, R. Zy?ka, J. Mi?kiewicz, and S. Przestalski, “Antioxidative effect of quercetin and its equimolar mixtures with phenyltin compounds on liposome membranes,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7735–7746, 2006.