全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

DOI: 10.4061/2011/973741

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8?M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. 1. Introduction Production of therapeutic proteins in inclusion bodies is useful due to the efficacy of insoluble expression such as high product yield and protection against degradation by proteases [1]. The recovery of biologically active protein from such inclusion bodies requires refolding protocols. In general, the methods used for inclusion body solubilization result in a soluble protein that is biologically inactive. The solublized proteins do not have native conformation and must be transferred into conditions that allow the formation of the native structure. During this period, the correct folding pathway competes, often in disadvantage with misfolding and aggregation of the target protein. Protein refolding involves intramolecular interactions and follows first-order kinetics [2]. Refolding yields commonly decrease with increasing initial concentrations of the unfolded protein independent of the refolding method applied [3]. Aggregates are formed by nonnative intramolecular hydrophobic interactions between protein folding intermediates, which have not yet buried their hydrophobic amino acid stretches. Therefore, prevention of hydrophobic intermolecular interaction during the first steps of refolding is crucial to allow successful renaturation at high protein concentrations [4]. A very efficient strategy to prevent aggregation is to minimize the risk of

References

[1]  E. B. Clark, “Protein refolding for industrial processes,” Current Opinion in Biotechnology, vol. 12, no. 2, pp. 202–207, 2001.
[2]  D. B. Wetlaufer and Y. Xie, “Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II,” Protein Science, vol. 4, no. 8, pp. 1535–1543, 1995.
[3]  P. Gupta, C. K. Hall, and A. C. Voegler, “Effect of denaturant and protein concentrations upon protein refolding and aggregation: a simple lattice model,” Protein Science, vol. 7, no. 12, pp. 2642–2652, 1998.
[4]  L. F. Vallejo and U. Rinas, “Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins,” Microbial Cell Factories, vol. 3, article 11, 2004.
[5]  C. J. Epstein and C. B. Anfinsen, “The reversible reduction of disulfide bonds in trypsin and ribonuclease coupled to carboxymethyl cellulose,” The Journal of Biological Chemistry, vol. 237, pp. 2175–2179, 1962.
[6]  N. K. Sinha and A. Light, “Refolding of reduced, denatured trypsinogen and trypsin immobilized on agarose beads,” Journal of Biological Chemistry, vol. 250, no. 22, pp. 8624–8629, 1975.
[7]  V. V. Mozhaev, K. Martinek, and I. V. Berezin, “Effect of immobilization on protein (trypsin) folding,” Molekulyarnaya Biologiya, vol. 13, no. 1, pp. 73–80, 1979.
[8]  T. E. Creighton, “Folding of proteins adsorbed reversibly to ionexchange resins,” in UCLA Symposia on Molecular and Cellular Biology, New Series, D. L. Oxender, Ed., vol. 39, pp. 249–257, Alan R. Liss, New York, NY, USA, 1986.
[9]  R. R. Lobb, J. W. Harper, and J. W. Fett, “Purification of heparin-binding growth factors,” Analytical Biochemistry, vol. 154, no. 1, pp. 1–14, 1986.
[10]  Y. Shing, “Biaffinity chromatography of fibroblast growth factors,” Methods in Enzymology, vol. 198, pp. 91–95, 1991.
[11]  T. H. Cho, S. J. Ahn, and E. K. Lee, “Refolding of protein inclusion bodies directly from E. coli homogenate using expanded bed adsorption chromatography,” Bioseparation, vol. 10, no. 4-5, pp. 189–196, 2001.
[12]  M. Li, Z. G. Su, and J. C. Janson, “In vitro protein refolding by chromatographic procedures,” Protein Expression and Purification, vol. 33, no. 1, pp. 1–10, 2004.
[13]  T. Mannen, S. Yamaguchi, J. Honda, S. Sugimoto, and T. Nagamune, “Expanded-bed protein refolding using a solid-phase artificial chaperone,” Journal of Bioscience and Bioengineering, vol. 91, no. 4, pp. 403–408, 2001.
[14]  N. M. Draeger and H. A. Chase, “Liquid fluidized bed adsorption of protein in the presence of cells,” Bioseparation, vol. 2, no. 2, pp. 67–80, 1991.
[15]  H. A. Chase and N. M. Draeger, “Affinity purification of proteins using expanded beds,” Journal of Chromatography, vol. 597, no. 1-2, pp. 129–145, 1992.
[16]  H. J. Johansson, C. Jagersten, and J. Shiloach, “Large scale recovery and purification of periplasmic recombinant protein from E. coli using expanded bed adsorption chromatography followed by new ion exchange media,” Journal of Biotechnology, vol. 48, no. 1-2, pp. 9–14, 1996.
[17]  M. Alibolandi, H. Mirzahoseini, M. A. Abad, and M. Azami movahed, “High level expression of human basic fibroblast growth factor in Escherichia coli: evaluating the effect of the GC content and rare codons within the first 13 codons,” African Journal of Biotechnology, vol. 9, no. 16, pp. 2456–2462, 2010.
[18]  U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[19]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[20]  G. Garke, W. D. Deckwer, and F. B. Anspach, “Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Eschericia coli,” Journal of Chromatography B, vol. 737, no. 1-2, pp. 25–38, 2000.
[21]  M. Alibolandi, H. Mirzahoseini, F. M. Nehi, G. Tabatabaian, H. Amini, and S. Sardari, “Improving recombinant protein solubility in Escherichia coli: identification of best chaperone combination which assists folding of human basic fibroblast growth factor,” African Journal of Biotechnology, vol. 9, no. 47, pp. 8100–8109, 2010.
[22]  S. J. Prestrelski, T. Arakawa, W. C. Kenney, and D. M. Byler, “The secondary structure of two recombinant human growth factors, platelet-derived growth factor and basic fibroblast growth factor, as determined by Fourier-transform infrared spectroscopy,” Archives of Biochemistry and Biophysics, vol. 285, no. 1, pp. 111–115, 1991.
[23]  A. S. Ladokhin, S. Jayasinghe, and S. H. White, “How to measure and analyze tryptophan fluorescence in membranes properly, and why bother?” Analytical Biochemistry, vol. 285, no. 2, pp. 235–245, 2000.
[24]  V. K. Dubey, J. Lee, and M. Blaber, “Redesigning symmetry-related mini-core regions of FGF-1 to increase primary structure symmetry: thermodynamic and functional consequences of structural symmetry,” Protein Science, vol. 14, no. 9, pp. 2315–2323, 2005.
[25]  R. Hjorth, S. Kampe, and M. Carlsson, “Analysis of some operating parameters of novel adsorbents for recovery of proteins in expanded beds,” Bioseparation, vol. 5, no. 4, pp. 217–223, 1995.
[26]  G. M. S. Finette, Q. M. Mao, and M. T. W. Hearn, “Examination of protein adsorption in fluidized bed and packed bed columns at different temperatures using frontal chromatographic methods,” Biotechnology and Bioengineering, vol. 58, no. 1, pp. 35–46, 1997.
[27]  G. Wang, “Isolation and purification of phycoerythrin from red alga Gracilaria verrucosa by expanded-bed-adsorption and ion-exchange chromatogaphy,” Chromatographia, vol. 56, no. 7-8, pp. 509–513, 2002.
[28]  R. Bermejo, M. A. Felipe, E. M. Talavera, and J. M. Alvarez-Pez, “Expanded bed adsorption chromatography for recovery of phycocyanins from the microalga Spirulina platensis,” Chromatographia, vol. 63, no. 1-2, pp. 59–66, 2006.
[29]  R. Bermejo, F. G. Acién, M. J. Ibá?ez, J. M. Fernández, E. Molina, and J. M. Alvarez-Pez, “Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography,” Journal of Chromatography B, vol. 790, no. 1-2, pp. 317–325, 2003.
[30]  F. Raymond, D. Rolland, M. Gauthier, and M. Jolivet, “Purification of a recombinant protein expressed in yeast: optimization of analytical and preparative chromatography,” Journal of Chromatography B, vol. 706, no. 1, pp. 113–121, 1998.
[31]  G. Maurizi, V. D. Cioccio, G. Macchia et al., “Purification of human recombinant interleukin 1 receptor antagonist proteins upon Bacillus subtilis sporulation,” Protein Expression and Purification, vol. 9, no. 2, pp. 219–227, 1997.
[32]  N. Willoughby, P. Martin, and N. Titchener-Hooker, “Extreme scale-down of expanded bed adsorption: purification of an antibody fragment directly from recombinant E. coli culture,” Biotechnology and Bioengineering, vol. 87, no. 5, pp. 641–647, 2004.
[33]  B. C. Batt, V. M. Yabannavar, and V. Singh, “Expanded bed adsorption process for protein recovery from whole mammalian cell culture broth,” Bioseparation, vol. 5, no. 1, pp. 41–52, 1995.
[34]  J. Th?mmes, A. Bader, M. Halfar, A. Karau, and M. R. Kula, “Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds,” Journal of Chromatography A, vol. 752, no. 1-2, pp. 111–122, 1996.
[35]  A. K. B. Frej, H. J. Johansson, S. Johansson, and P. Leijon, “Expanded bed adsorption at production scale: scale-up verification, process example and sanitization of column and adsorbent,” Bioprocess Engineering, vol. 16, no. 2, pp. 57–63, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133