全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Functional Cloning and Expression of the Schizophyllum commune Glucuronoyl Esterase Gene and Characterization of the Recombinant Enzyme

DOI: 10.1155/2012/951267

Full-Text   Cite this paper   Add to My Lib

Abstract:

The gene encoding Schizophyllum commune glucuronoyl esterase was identified in the scaffold 17 of the genome, containing two introns of 50?bp and 48?bp, with a transcript sequence of 1179?bp. The gene was synthesized and cloned into Pichia pastoris expression vector pGAPZα to achieve constitutive expression and secretion of the recombinant enzyme in soluble active form. The purified protein was 53?kD with glycosylation and had an acidic pI of 3.7. Activity analysis on several uronic acids and their derivatives suggests that the enzyme recognized only esters of 4-O-methyl-D-glucuronic acid derivatives, even with a 4-nitrophenyl aglycon but did not hydrolyze the ester of D-galacturonic acid. The kinetic values were 0.25?mM, 16.3?μM·min?1, and 9.27?s?1 with 4-nitrophenyl 2-O-(methyl 4-O-methyl-α-D-glucopyranosyluronate)-β-D-xylopyranoside as the substrate. 1. Introduction In the current schemes of biomass conversion, pretreatment with enzyme hydrolysis recovers only about 85% of the theoretical yield for the available sugars [1]. Development of a cost-competitive process is hampered by the lack of knowledge on the breakdown of covalent cross-linkages connecting cellulose, hemicellulose, and lignin in plant cell walls. As much as 90% of the lignin in woody plants might be covalently linked to polysaccharides [2]. The types of covalent lignin-carbohydrate linkages have been proposed to include lignin alcohol esters, ethers, and phenyl glycosides [3–5]. The wood-rotting fungus Schizophyllum commune has been shown to produce a glucuronoyl esterase (ScGE), which cleaves substrate mimics of ester bonds between lignin alcohols and glucuronoxylan [6]. Other carbohydrate esterases, acetylxylan esterases, feruloyl esterases, and pectin methylesterases, did not act on these substrates. GE enzymes were subsequently isolated from other source microorganisms, including Hypocrea jecorina, Phanerochaete chrysosporium, and Sporotrichum thermophile [7–9]. In this paper, the putative cDNA gene of glucuronoyl esterase in the genome of the original source microorganism, Schizophyllum commune was identified, synthesized, cloned, and expressed in Pichia pastoris. The recombinant enzyme (rScGE) was purified and its enzyme action characterized on uronic acid substrates and their derivatives. 2. Materials and Methods 2.1. Materials and Strains The pGAPZα-A vector, strain SMD1168, Zeocin, protein extraction reagent, precast gel, protein standards and staining kits were purchased from Invitrogen (San Diego, CA, USA). Gene DNA synthesis was performed by EZBiolab (Carmel, IN, USA), and

References

[1]  C. E. Wyman, B. E. Dale, R. T. Elander et al., “Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies,” Biotechnology Progress, vol. 25, no. 2, pp. 333–339, 2009.
[2]  M. Lawoko, G. Henriksson, and G. Gellerstedt, “Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps,” Biomacromolecules, vol. 6, no. 6, pp. 3467–3473, 2005.
[3]  T. J. Painter, “Residues of d-lyxo-5-hexosulopyranuronic acid in Sphagnum holocellulose, and their role in cross-linking,” Carbohydrate Research, vol. 124, no. 1, pp. C18–C21, 1983.
[4]  T. Imamura, T. Watanabe, M. Kuwahara, and T. Koshijima, “Ester linkages between lignin and glucuronic acid in lignin-carbohydrate complexes from Fagus crenata,” Phytochemistry, vol. 37, no. 4, pp. 1165–1173, 1994.
[5]  T. Watanabe, J. Ohnishi, Y. Yamasaki, S. Kaizu, and T. Koshjima, “Binding-site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation,” Agricultural and Biological Chemistry, vol. 53, pp. 2233–2252, 1989.
[6]  S. ?pániková and P. Biely, “Glucuronoyl esterase—novel carbohydrate esterase produced by Schizophyllum commune,” FEBS Letters, vol. 580, no. 19, pp. 4597–4601, 2006.
[7]  X. L. Li, S. ?pániková, R. P. de Vries, and P. Biely, “Identification of genes encoding microbial glucuronoyl esterases,” FEBS Letters, vol. 581, no. 21, pp. 4029–4035, 2007.
[8]  M. ?uranová, S. ?pániková, H. A. B. W?sten, P. Biely, and R. P. De Vries, “Two glucuronoyl esterases of Phanerochaete chrysosporium,” Archives of Microbiology, vol. 191, no. 2, pp. 133–140, 2009.
[9]  C. Vafiadi, E. Topakas, P. Biely, and P. Christakopoulos, “Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile,” FEMS Microbiology Letters, vol. 296, no. 2, pp. 178–184, 2009.
[10]  M. ?uranová, J. Hirsch, K. Kolenová, and P. Biely, “Fungal glucuronoyl esterases and substrate uronic acid recognition,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 11, pp. 2483–2487, 2009.
[11]  J. Hirsch, V. Langer, and M. Koó?, “Synthesis and molecular structure of methyl 4-O-methyl-α-D- glucopyranuronate,” Molecules, vol. 10, no. 1, pp. 251–258, 2005.
[12]  K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006.
[13]  P. R. Pokkuluri, N. E. C. Duke, S. J. Wood et al., “Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina,” Proteins: Structure, Function and Bioformatics, vol. 79, no. 8, pp. 2588–2592, 2011.
[14]  M. L. Mattinen, M. Kontteli, J. Kerovuo et al., “Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei,” Protein Science, vol. 6, no. 2, pp. 294–303, 1997.
[15]  O. Olsen and K. K. Thomsen, “Improvement of bacterial β-glucanase thermostability by glycosylation,” Journal of General Microbiology, vol. 137, no. 3, pp. 579–585, 1991.
[16]  S. E. Clark, E. H. Muslin, and C. A. Henson, “Effect of adding and removing N-glycosylation recognition sites on the thermostability of barley α-glucosidase,” Protein Engineering, Design and Selection, vol. 17, no. 3, pp. 245–249, 2004.
[17]  J. C. Yang, R. Madupu, A. S. Durkin et al., “The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms),” PLoS ONE, vol. 4, no. 7, Article ID e6085, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413