全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

DOI: 10.1155/2012/934325

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3?U?mL?1) with higher specific productivities (>30?U?g?1?h?1). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry. 1. Introduction Plant biomass is one of the most abundant renewable resources for many purposes, and it is mainly composed of three types of polymers: cellulose, hemicellulose, and lignin that are strongly intermeshed and chemically bonded by noncovalent forces and by covalent cross-linkages. The rigid and complex molecular polymeric structure of cellulosic biomass makes lignocellulose highly resistant to chemical attack, solubilisation, and bioconversion. Physical or chemical pretreatment procedures which break down the lignocellulosic structures and thereby enhance the enzymatic accessibility are required for the conversion of biomass into several possible bioproducts [1, 2]. The enzymatic hydrolysis of cellulose materials involves synergistic actions of cellulases as well as xylanases and other enzymes [3, 4]. Cellulases are relatively costly enzymes, and a significant reduction in cost will be important for their commercial use. Most industrial cellulases are produced by fungi in submerged fermentation. Trichoderma reesei is the most important fungal species used for cellulase production although it produces low levels of β-glucosidase [5]. Some Aspergillus species are also important cellulase producers with higher levels of β-glucosidase than T. reesei [6]. The use of enzymes for processing cotton fiber in replacement of chemical and physical methods such as the use of alkali and washing with stones is relatively recent

References

[1]  C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresource Technology, vol. 96, no. 18, pp. 1959–1966, 2005.
[2]  A. Margeot, B. Hahn-Hagerdal, M. Edlund, R. Slade, and F. Monot, “New improvements for lignocellulosic ethanol,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 372–380, 2009.
[3]  L. R. Lynd, P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius, “Microbial cellulose utilization: fundamentals and biotechnology,” Microbiology and Molecular Biology Reviews, vol. 66, no. 3, pp. 506–577, 2002.
[4]  S. Subramaniyan and P. Prema, “Biotechnology of microbial xylanases: enzymology, molecular biology, and application,” Critical Reviews in Biotechnology, vol. 22, no. 1, pp. 33–64, 2002.
[5]  M. Schmoll and A. Schuster, “Biology and biotechnology of Trichoderma,” Applied Microbiology and Biotechnology, vol. 87, no. 3, pp. 787–799, 2010.
[6]  O. P. Ward, W. M. Qin, J. Dhanjoon, J. Ye, and A. Singh, “Physiology and biotechnology of Aspergillus,” Advances in Applied Microbiology, vol. 58, pp. 1–75, 2005.
[7]  R. Araújo, M. Casal, and A. Cavaco-Paulo, “Application of enzymes for textile fibres processing,” Biocatalysis and Biotransformation, vol. 26, no. 5, pp. 332–349, 2008.
[8]  E. Karapinar and M. O. Sariisik, “Scouring of cotton with cellulases, pectinases and proteases,” Fibres and Textiles in Eastern Europe, vol. 12, no. 3, pp. 79–82, 2004.
[9]  R. Anish, M. S. Rahman, and M. Rao, “Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims,” Biotechnology and Bioengineering, vol. 96, no. 1, pp. 48–56, 2007.
[10]  A. Miettinen-Oinonen, J. Londesborough, V. Joutsjoki, R. Lantto, and J. Vehmaanper?, “Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH,” Enzyme and Microbial Technology, vol. 34, no. 3-4, pp. 332–341, 2004.
[11]  S. Fujinami and M. Fujisawa, “Industrial applications of alkaliphiles and their enzymes—past, present and future,” Environmental Technology, vol. 31, no. 8-9, pp. 845–856, 2010.
[12]  S. Landaud, P. Piquerel, and J. Pourquie, “Screening for bacilli producing cellulolytic enzymes active in the neutral pH range,” Letters in Applied Microbiology, vol. 21, no. 5, pp. 319–321, 1995.
[13]  S. Ito, “Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents,” Extremophiles, vol. 1, no. 2, pp. 61–66, 1997.
[14]  T. Dutta, R. Sahoo, R. Sengupta, S. S. Ray, A. Bhattacharjee, and S. Ghosh, “Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization,” Journal of Industrial Microbiology & Biotechnology, vol. 35, no. 4, pp. 275–282, 2008.
[15]  M. Sagova-Mareckova, L. Cermak, J. Novotna, K. Plhackova, J. Forstova, and J. Kopecky, “Innovative methods for soil DNA purification tested in soils with widely differing characteristics,” Applied and Environmental Microbiology, vol. 74, no. 9, pp. 2902–2907, 2008.
[16]  R. M. Teather and P. J. Wood, “Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen,” Applied and Environmental Microbiology, vol. 43, no. 4, pp. 777–780, 1982.
[17]  V. Meza, P. Moreno, R. P. Tengerdy, and M. Gutierrez-Correa, “Transfer of a benomyl resistance marker by heat-inactivated Trichoderma reesei protoplasts,” Biotechnology Letters, vol. 17, no. 8, pp. 827–832, 1995.
[18]  G. K. Villena, L. Venkatesh, A. Yamazaki, S. Tsuyumu, and M. Gutiérrez-Correa, “Initial intracellular proteome profile of Aspergillus niger biofilms,” Revista Peruana de Biología, vol. 16, pp. 101–108, 2009.
[19]  D. Wessel and U. I. Flugge, “A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids,” Analytical Biochemistry, vol. 138, no. 1, pp. 141–143, 1984.
[20]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[21]  Z. Xiao, R. Storms, and A. Tsang, “Microplate-based filter paper assay to measure total cellulase activity,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 832–837, 2004.
[22]  T. Ghose, “Measurement of cellulolytic activities,” Pure and Applied Chemistry, vol. 59, pp. 257–258, 1987.
[23]  P. Bridge and B. Spooner, “Soil fungi: diversity and detection,” Plant and Soil, vol. 232, no. 1-2, pp. 147–154, 2001.
[24]  S. E. Gochenauer, “Soil fungi of Peru,” Mycopathologia et Mycologia Applicata, vol. 42, pp. 259–272, 1970.
[25]  S. E. Gochenaur, “Distributional patterns of mesophilous and thermophilous microfungi in two bahamian soils,” Mycopathologia, vol. 57, no. 3, pp. 155–164, 1975.
[26]  K. G. Mukerji, “Ecological studies on the microorganic population of usar soils,” Mycopathologia et Mycologia Applicata, vol. 29, no. 3-4, pp. 339–349, 1966.
[27]  G. Varghese, “Soil microflora of plantations and natural rain forest of West Malaysia,” Mycopathologia et Mycologia Applicata, vol. 48, no. 1, pp. 43–61, 1972.
[28]  D. K. Sandhu and S. Singh, “Distribution of thermophilous microfungi in forest soils of Darjeeling (Eastern Himalayas),” Mycopathologia, vol. 74, no. 2, pp. 79–85, 1981.
[29]  P. Picart, P. Diaz, and F. I. J. Pastor, “Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization,” Letters in Applied Microbiology, vol. 45, no. 1, pp. 108–113, 2007.
[30]  T. Dutta, R. Sengupta, R. Sahoo, S. Sinha Ray, A. Bhattacharjee, and S. Ghosh, “A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization,” Letters in Applied Microbiology, vol. 44, no. 2, pp. 206–211, 2007.
[31]  B. S. Montenecourt and D. E. Eveleigh, “Semiquantitative plate assay for determination of cellulase production by Trichoderma viride,” Applied and Environmental Microbiology, vol. 33, no. 1, pp. 178–183, 1977.
[32]  N. T. Sehnem, L. R. De Bittencourt, M. Camassola, and A. J. P. Dillon, “Cellulase production by Penicillium echinulatum on lactose,” Applied Microbiology and Biotechnology, vol. 72, no. 1, pp. 163–167, 2006.
[33]  B. Seiboth, B. S. Pakdaman, L. Hartl, and C. P. Kubicek, “Lactose metabolism in filamentous fungi: how to deal with an unknown substrate,” Fungal Biology Reviews, vol. 21, no. 1, pp. 42–48, 2007.
[34]  C. P. Kubicek, M. Mikus, A. Schuster, M. Schmoll, and B. Seiboth, “Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina,” Biotechnology for Biofuels, vol. 2, no. 1, pp. 1–14, 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133