全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Propagation of Mu?a-Mu?a (Clinopodium odorum (Griseb.) Harley)

DOI: 10.1155/2012/196583

Full-Text   Cite this paper   Add to My Lib

Abstract:

A micropropagation protocol was developed which may assist in the safeguarding and augmentation of dwindling natural populations of Clinopodium odorum (Griseb.) Harley, a critically and endangered medicinal plant. Factors affecting culture initiation bud sprouting and growth, rooting, and acclimatization were studied, using nodal segments of in vitro germinated seedling as primary explants on six media supplemented with different concentrations and combinations of 6-benzylaminopurine (BAP) (0.5–1.5 and 2-Naphthalene acetic acid (NAA) (0.5–1.5). Best results for culture initiation with sustainable multiplication rates (100%) were obtained on WP medium without any growth regulator. WP with the addition of 0.5?:?1 or 0.5?:?1.5) of BAP and NAA promoted a higher elongation; however, the optimum number of nodes were obtained in plantlets grown on 1/2 MS with the addition of 1?:?1.5 of BAP and NAA. Culture of sectioned individual nodes transferred to the media with different rates of BAP and NAA 1/2 MS-9 (1.5?:?1.5), SH-8 (1.5?:?1.0), and 1/2 B5-4 (1.0?:?0.5) media resulted in no proliferated shoots. The in vitro plants were successfully acclimatized garden soil and sand (2?:?1) in the greenhouse, with over 90% survival rate. The in vitro-grown plants could be transferred to ex vitro conditions and the efficacy in supporting ex vitro growth was assessed, with a view to develope longer-term strategies for the transfer and reintroduction into natural habitats. 1. Introduction Clinopodium odorum (Griseb.) Harley is a small deciduous shrub of the family Lamiaceae commonly known as mu?a-mu?a. In Argentine, the species is restricted to a very specific niche; plant exploration studies in the region has revealed the occurrence of only small populations that is especially characteristic of Pampa de Achala (Córdoba) distributed at an elevation of 1200?m [1]. The fresh herb is used as a flavoring agent for aliments and an infusion of the aerial parts is utilized as an anticatarrhal, antispasmodic, stringent, carminative, digestive, diuretic, laxative, stomachic, soporific, vermifuge, menstrual suppression, flatulent, colic, and tonic digestive and antispasmodic and to help in parturition [2, 3]. This plant species have been excessively collected from its habitats and become endangered due to different contributory factors: extensive denudation of the forest floor, caused by cattle grazing and collection of leaf litter, and removal from the wilderness which is highly used in the preparation of liquor companies “Amargos serranos” [4, 5]. Seed is only the means of

References

[1]  G. E. Barboza, J. J. Cantero, C. Nú?ez, A. Pacciaroni, and L. Ariza Espinar, Medicinal Plants: Review and a phytochemical and ethnopharmacological Screening of the Native Argentine Flora, vol. 34, Kurtziana, 2009.
[2]  G. B. Mahady, “Medicinal plants for the prevention and treatment of bacterial infections,” Current Pharmaceutical Design, vol. 11, no. 19, pp. 2405–2427, 2005.
[3]  R. M. Harley and A. G. Paucar, “List of species of tropical American Clinopodium (Labiatae), with new combinations,” Kew Bulletin, vol. 55, no. 4, pp. 917–927, 2000.
[4]  M. E. Goleniowski, G. A. Bongiovanni, L. Palacio, C. O. Nu?ez, and J. J. Cantero, “Medicinal plants from the "Sierra de Comechingones", Argentina,” Journal of Ethnopharmacology, vol. 107, no. 3, pp. 324–341, 2006.
[5]  G. J. Martínez, A. M. Planchuelo, E. Fuentes, and M. Ojeda, “A numeric index to establish conservation priorities for medicinal plants in the Paravachasca Valley, Córdoba, Argentina,” Biodiversity and Conservation, vol. 15, no. 8, pp. 2457–2475, 2006.
[6]  J. J. Cantero and C. A. Bianco, “Las plantas vasculares del suroeste de la provincia de Córdoba. Catálogo preliminar de las especies,” Revista Universidad Nacional De Río Cuarto, vol. 6, pp. 65–75, 1986.
[7]  A. Rubluo, V. Chávez, A. P. Martínez, and O. Martínez-Vázquez, “Strategies for the recovery of endangered orchids and cacti through in-vitro culture,” Biological Conservation, vol. 63, no. 2, pp. 163–169, 1993.
[8]  G. M. Alves and M. P. Guerra, “Micropropagation for mass propagation and conservation of Vrieseafri burgensis var. paludosa from microbuds,” Journal of the Bromeliad Society, vol. 515, pp. 202–212, 2001.
[9]  H. K. Badola, H. K. Badola, and B. K. Pradhan, “Chemical stimulation of seed germination in ex situ produced seeds in Swertia chirayita, a critically endangered medicinal herb,” Research Journal of Seed Science, vol. 3, no. 3, pp. 139–149, 2010.
[10]  F. Engelmann, “In vitro conservation methods,” in Biotechnology and Plant Genetic Resources, J. A. Callow, B. V. Ford-Lloyd, and H. J. Newbury, Eds., pp. 119–161, CAB International, Oxon, England, 1997.
[11]  A. Rech Filho, L. L. Dal Vesco, R. O. Nodari, R. W. Lischka, C. V. Müller, and M. P. Guerra, “Tissue culture for the conservation and mass propagation of Vriesea reitzii Leme and Costa, a bromeliad threatened of extinction from the Brazilian Atlantic Forest,” Biodiversity and Conservation, vol. 14, no. 8, pp. 1799–1808, 2005.
[12]  T. Murashige and F. Skoog, “A revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiology Plant, vol. 15, pp. 473–497, 1962.
[13]  R. U. Schenk and A. Hildebrandt, “Medium and techniques for induction and growth of Monocotyledonous and dicotyledonous plant cell cultures,” Canadian Journal of Botany, vol. 350, pp. 199–204, 1972.
[14]  G. Lloyd and B. McCown, “Commercially-feasibible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture,” Proceedings International Plant Propagators Society, vol. 30, pp. 421–427, 1980.
[15]  O. L. Gamborg, R. A. Miller, and K. Ojima, “Nutrient requirements of suspension cultures of soybean root cells,” Experimental Cell Research, vol. 50, no. 1, pp. 151–158, 1968.
[16]  J. H. Zar, Biostatistical Analysis, Prentice-Hall, Englewood Clifffs, NJ, USA, 1996.
[17]  E. Pérez-Molphe-Balch and C. A. Dávila-Figueroa, “In vitro propagation of Pelecyphora aselliformis Ehrenberg and P. strobiliformis Werdermann (Cactaceae),” In vitro Cellular and Developmental Biology-Plant, vol. 38, no. 1, pp. 73–78, 2002.
[18]  M. D. S. Santos-Díaz, R. Méndez-Ontiveros, A. Arredondo-Gómez, and M. D. L. Santos-Díaz, “In vitro organogenesis of Pelecyphora aselliformis Erhenberg (Cactaceae),” In vitro Cellular and Developmental Biology-Plant, vol. 39, no. 5, pp. 480–484, 2003.
[19]  P. Grappin, D. Bouinot, B. Sotta, E. Miginiac, and M. Jullien, “Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance,” Planta, vol. 210, no. 2, pp. 279–285, 2000.
[20]  G. Metzger, “Plant hormone interactions during seed dormancy release and germination,” Seed Science Research, vol. 15, no. 4, pp. 281–307, 2005.
[21]  W. E. Finch-Savage and G. Leubner-Metzger, “Seed dormancy and the control of germination,” New Phytologist, vol. 171, no. 3, pp. 501–523, 2006.
[22]  J. V. Jacobsen, D. W. Pearce, A. T. Poole, R. P. Pharis, and L. N. Mander, “Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley,” Physiologia Plantarum, vol. 115, no. 3, pp. 428–441, 2002.
[23]  B. Kucera, M. A. Cohn, and G. Leubner-Metzger, “Plant hormone interactions during seed dormancy release and germination,” Seed Science Research, vol. 15, no. 4, pp. 281–307, 2005.
[24]  J. Wu, X. Zhang, Y. Nie, S. Jin, and S. Liang, “Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.),” In vitro Cellular and Developmental Biology - Plant, vol. 40, no. 4, pp. 371–375, 2004.
[25]  B. H. Mc Cown and J. C. Sellmer, “General media and vessels suitable for woody plant culture,” in Cell and Tissue Culture in Forestry, J. M. Bonga and D. J. Durzan, Eds., vol. 1 of General Principles and Biotechnology, pp. 4–l6, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987.
[26]  M. Lambardi and A. De Carlo, “Application of tissue culture to the germplasm conservation of temperate broad-leaf trees,” in Micropropagation of Woody Trees and Fruits, S. M. Jain and K. I. Ishii, Eds., pp. 241–248, Kluwer Academic, Dordrecht, The Netherlands, 2003.
[27]  L. Palacio, M. C. Baeza, J. J. Cantero, R. Cusidó, and M. E. Goleniowski, “In vitro propagation of "Jarilla" (Larrea divaricata Cav.) and Secondary Metabolite Production,” Biological and Pharmaceutical Bulletin, vol. 31, no. 12, pp. 2321–2325, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133