全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Direct Spectrophotometric Assay for Benzaldehyde Lyase Activity

DOI: 10.4061/2011/478925

Full-Text   Cite this paper   Add to My Lib

Abstract:

Benzaldehyde lyase from Pseudomonas fluorescens Biovar I. (BAL, EC 4.1.2.38) is a versatile catalyst for the organic synthesis of chiral α-hydroxy ketones. To allow fast assessment of enzyme activity, a direct spectrophotometric assay is desirable. Here, a new robust and easy-to-handle assay based on UV absorption is presented. The assay developed is based on the ligation of the α-hydroxy ketone (R)-2,2′-furoin from 2-furaldehyde. A robust assay with direct monitoring of the product is facilitated with a convenient concentration working range minimising experimental associated with low concentrations. 1. Introduction Benzaldehyde lyase (BAL; EC 4.1.2.38) from Pseudomonas fluorescens Biovar I (BAL, EC 4.1.2.38) belongs to the group of thiamine diphosphate- (ThDP-) dependent enzymes [1]. It is a versatile catalyst for the enantioselective synthesis of a broad variety of α-hydroxy ketones by both C–C bond coupling and kinetic resolution. These chiral compounds are important building blocks for the synthesis of several drugs and natural products [2–8]. According to its synthetic importance and application prospects, several methods for the determination of BAL activity have already been established. Most prominent are the uses of high pressure liquid chromatography (HPLC) or a combination of gas chromatography and mass spectroscopy (GC-MS) [3, 9]. However, these methods are material- and time-consuming when it comes to sample preparation and performance of measurements, and are therefore hardly applicable to the monitoring of fast reaction courses or large sample batches. For these purposes, establishment of spectrometric methods is highly desirable. In fact, the BAL-catalysed carboligation of benzaldehyde into benzoin has been determined via spectrophotometry at a wavelength of 250?nm. However, both benzaldehyde and benzoin revealed a considerable absorption at this wavelength resulting in an overlap for which a correction had to be carried out [1]. The same applies for the spectrophotometric determination of the condensation of furaldehyde into furoin at a wavelength of 277?nm. Fluorescence spectroscopy at an excitation wavelength of 360?nm and an emission wavelength of 470?nm was used for the investigation of the carboligation of 3,5-dimethylbenzaldehyde (DMBA) into 3,3′,5,5′-tetramethoxybenzoin (TMB) [10]. However, the linear range of this assay strongly depends on the pathway of the excitation light [11]. Furthermore, the method is restricted to this substrate-product pair suffering from the same limited solubility as benzoin (see below). Generally,

References

[1]  B. González and R. Vicuńa, “Benzaldehyde lyase, a novel thiamine -requiring enzyme, from Pseudomonas fluorescens Biovar I,” Journal of Bacteriology, vol. 171, no. 5, pp. 2401–2405, 1989.
[2]  A. S. Demir, M. Pohl, E. Janzen, and M. Müller, “Enantioselective synthesis of hydroxy ketones through cleavage and formation of acyloin linkage: enzymatic kinetic resolution via C—C bond cleavage,” Journal of the Chemical Society: Perkin Transactions 1, no. 8, pp. 633–635, 2001.
[3]  E. Janzen, M. Müller, D. Kolter-Jung, M. M. Kneen, M. J. McLeish, and M. Pohl, “Characterization of benzaldehyde lyase from Pseudomonas fluorescens: a versatile enzyme for asymmetric C—C bond formation,” Bioorganic Chemistry, vol. 34, no. 6, pp. 345–361, 2006.
[4]  M. B. Ansorge-Schumacher, L. Greiner, F. Schroeper, S. Mirtschin, and T. Hischer, “Operational concept for the improved synthesis of (R)-3,3'-furoin and related hydrophobic compounds with benzaldehyde lyase,” Biotechnology Journal, vol. 1, no. 5, pp. 564–568, 2006.
[5]  T. Hischer, D. Gocke, M. Fernandez et al., “Stereoselective synthesis of novel benzoins catalysed by benzaldehyde lyase in a gel-stabilised two-phase system,” Tetrahedron, vol. 61, no. 31, pp. 7378–7383, 2005.
[6]  A. S. Demir, O. Sesenoglu, P. Dünkelmann, and M. Müller, “Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde,” Organic Letters, vol. 5, no. 12, pp. 2047–2050, 2003.
[7]  R. J. Mikolajek, A. C. Spiess, M. Pohl, S. Lamare, and J. Büchs, “An activity, stability and selectivity comparison of propioin synthesis by thiamine diphosphate-dependent enzymes in a solid/gas bioreactor,” ChemBioChem, vol. 8, no. 9, pp. 1063–1070, 2007.
[8]  M. Pohl, M. Müller, and A. Demir, “Nucleotide sequence encoding a benzaldehyde lyase, and process for stereoselectively synthesizing 2-hydroxyketones,” US Patent 7,045,334 B2, May 16,2006.
[9]  P. Ayhan, I. Simsek, B. Cifci, and A. S. Demir, “Benzaldehyde lyase catalyzed enantioselective self and cross condensation reactions of acetaldehyde derivatives,” Organic and Biomolecular Chemistry, vol. 9, no. 8, pp. 2602–2605, 2011.
[10]  A. van den Wittenboer, Stabilit?ten der Benzaldehydlyase aus Pseudomonas fluorescens und der Carbonylreduktase aus Candida parapsilosis in w?ssrig-organischen Zweiphasensystemen, Ph.D. dissertation, RWTH Aachen University, 2010.
[11]  M. Pohl, “Personal communication,” 2010.
[12]  T. Schmidt, M. Zavrel, A. Spie?, and M. B. Ansorge-Schumacher, “Biochemical peculiarities of benzaldehyde lyase from Pseudomonas fluorescencens Biovar I in the dependency on pH and cosolvent concentration,” Bioorganic Chemistry, vol. 37, no. 3, pp. 84–84, 2009.
[13]  S. Shanmuganathan, D. Natalia, A. van den Wittenboer, C. Kohlmann, L. Greiner, and P. Domínguez De María, “Enzyme-catalyzed C—C bond formation using 2-methyltetrahydrofuran (2-MTHF) as (co)solvent: efficient and bio-based alternative to DMSO and MTBE,” Green Chemistry, vol. 12, no. 12, pp. 2240–2245, 2010.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133