全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Use of Endophytes to Obtain Bioactive Compounds and Their Application in Biotransformation Process

DOI: 10.4061/2011/576286

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endophytes are microorganisms that reside asymptomatically in the tissues of higher plants and are a promising source of novel organic natural metabolites exhibiting a variety of biological activities. The laboratory of Bioaromas (Unicamp, Brazil) develops research in biotransformation processes and functional evaluation of natural products. With the intent to provide subsidies for studies on endophytic microbes related to areas cited before, this paper focuses particularly on the role of endophytes on the production of anticancer, antimicrobial, and antioxidant compounds and includes examples that illustrate their potential for human use. It also describes biotransformation as an auspicious method to obtain novel bioactive compounds from microbes. Biotransformation allows the production of regio- and stereoselective compounds under mild conditions that can be labeled as “natural,” as discussed in this paper. 1. Introduction The term “endophytes” includes a suite of microorganisms that grow intra-and/or intercelullarly in the tissues of higher plants without causing over symptoms on the plants in which they live, and have proven to be rich sources of bioactive natural products [1, 2]. Mutualism interaction between endophytes and host plants may result in fitness benefits for both partners [3]. The endophytes may provide protection and survival conditions to their host plant by producing a plethora of substances which, once isolated and characterized, may also have potential for use in industry, agriculture, and medicine [4, 5]. Approximately 300 000 plant species growing in unexplored area on the earth are host to one or more endophytes [6], and the presence of biodiverse endophytes in huge number plays an important role on ecosystems with greatest biodiversity, for instance, the tropical and temperate rainforests [5], which are extensively found in Brazil and possess almost 20% of its biotechnological source [7]. Considering that only a small amount of endophytes have been studied, recently, several research groups have been motivated to evaluate and elucidate the potential of these microorganisms applied on biotechnological processes focusing on the production of bioactive compounds. The production of bioactive substances by endophytes is directly related to the independent evolution of these microorganisms, which may have incorporated genetic information from higher plants, allowing them to better adapt to plant host and carry out some functions such as protection from pathogens, insects, and grazing animals [6]. Endophytes are chemical synthesizer

References

[1]  J. Li, G.-Z. Zhao, H.-H. Chen et al., “Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest,” Letters in Applied Microbiology, vol. 47, no. 6, pp. 574–580, 2008.
[2]  R. X. Tan and W. X. Zou, “Endophytes: a rich source of functional metabolites,” Natural Product Reports, vol. 18, no. 4, pp. 448–459, 2001.
[3]  K.-H. Kogel, P. Franken, and R. Hückelhoven, “Endophyte or parasite—what decides?” Current Opinion in Plant Biology, vol. 9, no. 4, pp. 358–363, 2006.
[4]  G. Strobel, B. Daisy, U. Castillo, and J. Harper, “Natural products from endophytic microorganisms,” Journal of Natural Products, vol. 67, no. 2, pp. 257–268, 2004.
[5]  G. Strobel and B. Daisy, “Bioprospecting for microbial endophytes and their natural products,” Microbiology and Molecular Biology Reviews, vol. 67, no. 4, pp. 491–502, 2003.
[6]  G. A. Strobel, “Endophytes as sources of bioactive products,” Microbes and Infection, vol. 5, no. 6, pp. 535–544, 2003.
[7]  A. Q. L. Souza, A. D. L. Souza, S. Astolfi Filho, M. L. Belém Pinheiro, M. I. M. Sarquis, and J. O. Pereira, “Atividade antimicrobiana de fungos endofíticos isolados de plantas tóxicas da Amaz?nia: Palicourea longiflora (aubl.) rich e Strychnos cogens bentham,” ACTA Amaz?nica, vol. 34, pp. 185–195, 2004.
[8]  N. L. Owen and N. Hundley, “Endophytes—the chemical synthesizers inside plants,” Science Progress, vol. 87, no. 2, pp. 79–99, 2004.
[9]  L. Zhang, R. An, J. Wang et al., “Exploring novel bioactive compounds from marine microbes,” Current Opinion in Microbiology, vol. 8, no. 3, pp. 276–281, 2005.
[10]  D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007.
[11]  A. A. L. Gunatilaka, “Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence,” Journal of Natural Products, vol. 69, no. 3, pp. 509–526, 2006.
[12]  J. L. Bicas, A. P. Dionísio, and G. M. Pastore, “Bio-oxidation of terpenes: an approach for the flavor industry,” Chemical Reviews, vol. 109, no. 9, pp. 4518–4531, 2009.
[13]  K. B. Borges, W. D. S. Borges, R. Durán-Patrón, M. T. Pupo, P. S. Bonato, and I. G. Collado, “Stereoselective biotransformations using fungi as biocatalysts,” Tetrahedron Asymmetry, vol. 20, no. 4, pp. 385–397, 2009.
[14]  J. L. Bicas, F. F. C. Barros, R. Wagner, H. T. Godoy, and G. M. Pastore, “Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 9, pp. 1061–1070, 2008.
[15]  U. Krings, B. Hardebusch, D. Albert, R. G. Berger, M. Maróstica Jr., and G. M. Pastore, “Odor-active alcohols from the fungal transformation of α-farnesene,” Journal of Agricultural and Food Chemistry, vol. 54, no. 24, pp. 9079–9084, 2006.
[16]  R. G. Berger, “Biotechnology of flavours-the next generation,” Biotechnology Letters, vol. 31, no. 11, pp. 1651–1659, 2009.
[17]  American Cancer Society, “Cancer Facts & Figures 2009,” American Cancer Society, Atlanta, Ga, USA, 2009.
[18]  WHO Mortality Database, Fact sheet No. 297. February 2009.
[19]  V. Gangadevi and J. Muthumary, “Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb,” World Journal of Microbiology and Biotechnology, vol. 24, no. 5, pp. 717–724, 2008.
[20]  G. Pasut and F. M. Veronese, “PEG conjugates in clinical development or use as anticancer agents: an overview,” Advanced Drug Delivery Reviews, vol. 61, no. 13, pp. 1177–1188, 2009.
[21]  S. Firáková, M. ?turdíková, and M. Mú?ková, “Bioactive secondary metabolites produced by microorganisms associated with plants,” Biologia, vol. 62, no. 3, pp. 251–257, 2007.
[22]  M. A. Cremasco, B. J. Hritzko, and N.-H. Linda Wang, “Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed,” Brazilian Journal of Chemical Engineering, vol. 26, no. 1, pp. 207–218, 2009.
[23]  M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail, “Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia,” Journal of the American Chemical Society, vol. 93, no. 9, pp. 2325–2327, 1971.
[24]  B. Guo, Y. Wang, X. Sun, and K. Tang, “Bioactive natural products from endophytes: a review,” Applied Biochemistry and Microbiology, vol. 44, no. 2, pp. 136–142, 2008.
[25]  H. Lu, B. Li, Y. Kang et al., “Paclitaxel nanoparticle inhibits growth of ovarian cancer xenografts and enhances lymphatic targeting,” Cancer Chemotherapy and Pharmacology, vol. 59, no. 2, pp. 175–181, 2006.
[26]  S. Kakolyris, A. Agelidou, N. Androulakis et al., “Cisplatin plus etoposide chemotherapy followed by thoracic irradiation and paclitaxel plus cisplatin consolidation therapy for patients with limited stage small cell lung carcinoma,” Lung Cancer, vol. 53, no. 1, pp. 59–65, 2006.
[27]  S. Peltier, J.-M. Oger, F. Lagarce, W. Couet, and J.-P. Beno?t, “Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules,” Pharmaceutical Research, vol. 23, no. 6, pp. 1243–1250, 2006.
[28]  A. Stierle, G. Strobel, and D. Stierle, “Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew,” Science, vol. 260, no. 5105, pp. 214–216, 1993.
[29]  J.-Y. Li, G. Strobel, R. Sidhu, W. M. Hess, and E. J. Ford, “Endophytic taxol-producing fungi from bald cypress, Taxodium distichum,” Microbiology, vol. 142, no. 8, pp. 2223–2226, 1996.
[30]  G. A. Strobel, W. M. Hess, J.-Y. Li et al., “Pestalotiopsis guepinii, a taxol-producing endophyte of the wollemi pine, Wollemia nobilis,” Australian Journal of Botany, vol. 45, no. 6, pp. 1073–1082, 1997.
[31]  R. S. Kumaran, J. Muthumary, and B. K. Hur, “Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp,” Engineering in Life Sciences, vol. 8, no. 4, pp. 438–446, 2008.
[32]  V. Gangadevi and J. Muthumary, “Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree),” Biotechnology and Applied Biochemistry, vol. 52, no. 1, pp. 9–15, 2009.
[33]  M. Pandi, R. Manikandan, and J. Muthumary, “Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7, 12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague dawley rats,” Biomedicine and Pharmacotherapy, vol. 64, pp. 48–53, 2010.
[34]  M. E. Wall, M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail, and G. A. Sim, “Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata,” Journal of the American Chemical Society, vol. 88, no. 16, pp. 3888–3890, 1966.
[35]  S. R. Uma, B. T. Ramesha, G. Ravikanth, P. G. Rajesh, R. Vasudeva, and K. N. Ganeshaiah, “Chemical profiling of N. nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system,” in Bioactive Molecules and Medicinal Plants, K. G. Ramawat and J. Merillion, Eds., pp. 198–210, Springer, Berlin, Germany, 2008.
[36]  Q.-Y. Li, Y.-G. Zu, R.-Z. Shi, and L.-P. Yao, “Review camptothecin: current perspectives,” Current Medicinal Chemistry, vol. 13, no. 17, pp. 2021–2039, 2006.
[37]  D. F. S. Kehrer, O. Soepenberg, W. J. Loos, J. Verweij, and A. Sparreboom, “Modulation of camptothecin analogs in the treatment of cancer: a review,” Anti-Cancer Drugs, vol. 12, no. 2, pp. 89–105, 2001.
[38]  S. Kusari, S. Zühlke, and M. Spiteller, “An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues,” Journal of Natural Products, vol. 72, no. 1, pp. 2–7, 2009.
[39]  S.-S. Jew, H.-J. Kim, M. Goo Kim et al., “Synthesis and in vitro cytotoxicity of hexacyclic Camptothecin analogues,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 22, pp. 3203–3206, 1999.
[40]  S. Shweta, S. Zuehlke, B. T. Ramesha et al., “Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin,” Phytochemistry, vol. 71, no. 1, pp. 117–122, 2010.
[41]  K. Liu, X. Ding, B. Deng, and W. Chen, “10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata,” Biotechnology Letters, vol. 32, no. 5, pp. 689–693, 2010.
[42]  S. Rehman, A. S. Shawl, A. Kour et al., “An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin,” Applied Biochemistry and Microbiology, vol. 44, no. 2, pp. 203–209, 2008.
[43]  T. Amna, S. C. Puri, V. Verma et al., “Bioreactor studies on the endophytic fungus entrophospora infrequens for the production of an anticancer alkaloid camptothecin,” Canadian Journal of Microbiology, vol. 52, no. 3, pp. 189–196, 2006.
[44]  S. G. Puri, V. Verma, T. Amna, G. N. Qazi, and M. Spiteller, “An endophytic fungus from Nothapodytes foetida that produces camptothecin,” Journal of Natural Products, vol. 68, no. 12, pp. 1717–1719, 2005.
[45]  S. K. Deshmukh, P. D. Mishra, A. Kulkarni-Almeida et al., “Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus,” Chemistry and Biodiversity, vol. 6, no. 5, pp. 784–789, 2009.
[46]  J.-Y. Zhang, L.-Y. Tao, Y.-J. Liang et al., “Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G1 with involvement of GSK-3β/β-catenin/c-Myc pathway,” Cell Cycle, vol. 8, no. 15, pp. 2444–2450, 2009.
[47]  L. G. Korkina, “Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health,” Cellular and Molecular Biology, vol. 53, no. 1, pp. 15–25, 2007.
[48]  T. P. Fill, B. F. da Silva, and E. Rodrigues-Fo, “Biosynthesis of phenylpropanoid amides by an endophytic penicillium brasilianum found in root bark of Melia azedarach,” Journal of Microbiology and Biotechnology, vol. 20, no. 3, pp. 622–629, 2010.
[49]  I. H. Chapela, O. Petrini, and L. Hagmann, “Monolignol glucosides as specific recognition messengers in fungus-plant symbioses,” Physiological and Molecular Plant Pathology, vol. 39, no. 4, pp. 289–298, 1991.
[50]  H. Koshino, S.-I. Terada, T. Yoshihara et al., “Three phenolic acid derivatives from stromata of Epichloe typhina on Phleum pratense,” Phytochemistry, vol. 27, no. 5, pp. 1333–1338, 1988.
[51]  M. Gordaliza, P. A. García, J. M. Miguel Del Corral, M. A. Castro, and M. A. Gómez-Zurita, “Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives,” Toxicon, vol. 44, no. 4, pp. 441–459, 2004.
[52]  S. Kusari, M. Lamsh?ft, and M. Spiteller, “Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin,” Journal of Applied Microbiology, vol. 107, no. 3, pp. 1019–1030, 2009.
[53]  A. Kour, A. S. Shawl, S. Rehman et al., “Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva,” World Journal of Microbiology and Biotechnology, vol. 24, no. 7, pp. 1115–1121, 2008.
[54]  S. C. Puri, A. Nazir, R. Chawla et al., “The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans,” Journal of Biotechnology, vol. 122, no. 4, pp. 494–510, 2006.
[55]  A. L. Eyberger, R. Dondapati, and J. R. Porter, “Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin,” Journal of Natural Products, vol. 69, no. 8, pp. 1121–1124, 2006.
[56]  M. M. Wagenaar, J. Corwin, G. Strobel, and J. Clardy, “Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella,” Journal of Natural Products, vol. 63, no. 12, pp. 1692–1695, 2000.
[57]  J. C. Lee, G. A. Strobel, E. Lobkovsky, and J. Clardy, “Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora,” Journal of Organic Chemistry, vol. 61, no. 10, pp. 3232–3233, 1996.
[58]  Y. Chen, H. Guo, Z. Du, X.-Z. Liu, Y. Che, and X. Ye, “Ecology-based screen identifies new metabolites from a Cordyceps-colonizing fungus as cancer cell proliferation inhibitors and apoptosis inducers,” Cell Proliferation, vol. 42, no. 6, pp. 838–847, 2009.
[59]  M. D. R. V. Fernandes, T. A. C. Silva, L. H. Pfenning et al., “Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L,” Brazilian Journal of Pharmaceutical Sciences, vol. 45, no. 4, pp. 677–685, 2009.
[60]  Y. Huang, J. Wang, G. Li, Z. Zheng, and W. Su, “Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis,” FEMS Immunology and Medical Microbiology, vol. 31, no. 2, pp. 163–167, 2001.
[61]  S. F. Brady, M. P. Singh, J. E. Janso, and J. Clardy, “Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus,” Organic Letters, vol. 2, no. 25, pp. 4047–4049, 2000.
[62]  M. Isaka, A. Jaturapat, K. Rukseree, K. Danwisetkanjana, M. Tanticharoen, and Y. Thebtaranonth, “Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species,” Journal of Natural Products, vol. 64, no. 8, pp. 1015–1018, 2001.
[63]  G. Ding, Z. Zheng, S. Liu, H. Zhang, L. Guo, and Y. Che, “Photinides A-F, cytotoxic benzofuranone-derived γ-lactones from the plant endophytic fungus Pestalotiopsis photiniae,” Journal of Natural Products, vol. 72, no. 5, pp. 942–945, 2009.
[64]  Y. C. Song, H. Li, Y. H. Ye, C. Y. Shan, Y. M. Yang, and R. X. Tan, “Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths,” FEMS Microbiology Letters, vol. 241, no. 1, pp. 67–72, 2004.
[65]  C. Klemke, S. Kehraus, A. D. Wright, and G. M. K?nig, “New secondary metabolites from the marine endophytic fungus Apiospora montagnei,” Journal of Natural Products, vol. 67, no. 6, pp. 1058–1063, 2004.
[66]  H. Yu, L. Zhang, L. Li et al., “Recent developments and future prospects of antimicrobial metabolites produced by endophytes,” Microbiological Research, vol. 165, no. 6, pp. 437–449, 2010.
[67]  J.-H. Song, “What's new on the antimicrobial horizon?” International Journal of Antimicrobial Agents, vol. 32, no. 4, pp. S207–S213, 2008.
[68]  X. Liu, M. Dong, X. Chen, M. Jiang, X. Lv, and J. Zhou, “Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin,” Applied Microbiology and Biotechnology, vol. 78, no. 2, pp. 241–247, 2008.
[69]  W. Pongcharoen, V. Rukachaisirikul, S. Phongpaichit et al., “Metabolites from the endophytic fungus Xylaria sp. PSU-D14,” Phytochemistry, vol. 69, no. 9, pp. 1900–1902, 2008.
[70]  P. Pittayakhajonwut, R. Suvannakad, S. Thienhirun, S. Prabpai, P. Kongsaeree, and M. Tanticharoen, “An anti-herpes simplex virus-type 1 agent from Xylaria mellisii (BCC 1005),” Tetrahedron Letters, vol. 46, no. 8, pp. 1341–1344, 2005.
[71]  S. Boonphong, P. Kittakoop, M. Isaka, D. Pittayakhajonwut, M. Tanticharoen, and Y. Thebtaranonth, “Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex,” Journal of Natural Products, vol. 64, no. 7, pp. 965–967, 2001.
[72]  J.-H. Park, G. J. Choi, H. B. Lee et al., “Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi,” Journal of Microbiology and Biotechnology, vol. 15, no. 1, pp. 112–117, 2005.
[73]  H. Koshino, T. Yoshihara, S. Sakamura, T. Shimanuki, T. Sato, and A. Tajimi, “Novel C-11 epoxy fatty acid from stromata of Epichloe typhina on Phleum pratense,” Agricultural Biology and Chemistry, vol. 53, pp. 2527–2528, 1989.
[74]  J. A. Findlay, G. Li, and J. A. Johnson, “Bioactive compounds from an endophytic fungus from eastern larch (Larix laricina) needles,” Canadian Journal of Chemistry, vol. 75, no. 6, pp. 716–719, 1997.
[75]  J.-C. Qin, Y.-M. Zhang, J.-M. Gao et al., “Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 6, pp. 1572–1574, 2009.
[76]  Z. Huang, X. Cai, C. Shao et al., “Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76,” Phytochemistry, vol. 69, no. 7, pp. 1604–1608, 2008.
[77]  B. Schulz, J. Sucker, H. J. Aust et al., “Biologically active secondary metabolites of endophytic Pezicula species,” Mycological Research, vol. 99, no. 8, pp. 1007–1015, 1995.
[78]  E. Li, L. Jiang, L. Guo, H. Zhang, and Y. Che, “Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta,” Bioorganic and Medicinal Chemistry, vol. 16, no. 17, pp. 7894–7899, 2008.
[79]  S. Kusari, M. Lamsh?ft, S. Zühlke, and M. Spiteller, “An endophytic fungus from Hypericum perforatum that produces hypericin,” Journal of Natural Products, vol. 71, no. 2, pp. 159–162, 2008.
[80]  U. Castillo, J. K. Harper, G. A. Strobel et al., “Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia,” FEMS Microbiology Letters, vol. 224, no. 2, pp. 183–190, 2003.
[81]  F. W. Wang, R. H. Jiao, A. B. Cheng, S. H. Tan, and Y. C. Song, “Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp,” World Journal of Microbiology and Biotechnology, vol. 23, no. 1, pp. 79–83, 2007.
[82]  D. Ezra, U. F. Castillo, G. A. Strobel et al., “Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp,” Microbiology, vol. 150, no. 4, pp. 785–793, 2004.
[83]  F. M. P. de Melo, M. F. Fiore, L. A. B. de Moraes et al., “Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4A,” Scientia Agricola, vol. 66, no. 5, pp. 583–592, 2009.
[84]  M. C. Cafêu, G. H. Silva, H. L. Teles et al., “Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae),” Quimica Nova, vol. 28, no. 6, pp. 991–995, 2005.
[85]  G. H. Silva, H. L. Teles, H. C. Trevisan et al., “New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis,” Journal of the Brazilian Chemical Society, vol. 16, no. 6 B, pp. 1463–1466, 2005.
[86]  A. M. R. Marinho, E. Rodrigues-Filho, M. D. L. R. Moitinho, and L. S. Santos, “Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach,” Journal of the Brazilian Chemical Society, vol. 16, no. 2, pp. 280–283, 2005.
[87]  J. Y. Liu, Y. C. Song, Z. Zhang et al., “Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites,” Journal of Biotechnology, vol. 114, no. 3, pp. 279–287, 2004.
[88]  F. You, T. Han, J.-Z. Wu, B.-K. Huang, and L.-P. Qin, “Antifungal secondary metabolites from endophytic Verticillium sp,” Biochemical Systematics and Ecology, vol. 37, no. 3, pp. 162–165, 2009.
[89]  E. Li, R. Tian, S. Liu, X. Chen, L. Guo, and Y. Che, “Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae,” Journal of Natural Products, vol. 71, no. 4, pp. 664–668, 2008.
[90]  A. H. Aly, R. Edrada-Ebel, V. Wray et al., “Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides,” Phytochemistry, vol. 69, no. 8, pp. 1716–1725, 2008.
[91]  V. Rukachaisirikul, U. Sommart, S. Phongpaichit, J. Sakayaroj, and K. Kirtikara, “Metabolites from the endophytic fungus Phomopsis sp. PSU-D15,” Phytochemistry, vol. 69, no. 3, pp. 783–787, 2008.
[92]  A. M. Hoffman, S. G. Mayer, G. A. Strobel et al., “Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species,” Phytochemistry, vol. 69, no. 4, pp. 1049–1056, 2008.
[93]  J. Y. Li, J. K. Harper, D. M. Grant et al., “Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp,” Phytochemistry, vol. 56, no. 5, pp. 463–468, 2001.
[94]  U. F. Castillo, G. A. Strobel, E. J. Ford et al., “Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans,” Microbiology, vol. 148, no. 9, pp. 2675–2685, 2002.
[95]  W.-Y. Huang, Y.-Z. Cai, J. Xing, H. Corke, and M. Sun, “A potential antioxidant resource: endophytic fungi from medicinal plants,” Economic Botany, vol. 61, no. 1, pp. 14–30, 2007.
[96]  H. E. Seifried, D. E. Anderson, E. I. Fisher, and J. A. Milner, “A review of the interaction among dietary antioxidants and reactive oxygen species,” Journal of Nutritional Biochemistry, vol. 18, no. 9, pp. 567–579, 2007.
[97]  M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.
[98]  R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch, “The antioxidant/anticancer potential of phenolic compounds isolated from olive oil,” European Journal of Cancer, vol. 36, no. 10, pp. 1235–1247, 2000.
[99]  L. S. Cozma, “The role of antioxidant therapy in cardiovascular disease,” Current Opinion in Lipidology, vol. 15, no. 3, pp. 369–371, 2004.
[100]  B. Halliwell, “Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?” The Lancet, vol. 344, no. 8924, pp. 721–724, 1994.
[101]  L. A. Mitscher, H. Telikepalli, E. McGhee, and D. M. Shankel, “Natural antimutagenic agents,” Mutation Research, vol. 350, no. 1, pp. 143–152, 1996.
[102]  A. Sala, M. Del Carmen Recio, R. M. Giner et al., “Anti-inflammatory and antioxidant properties of Helichrysum italicum,” Journal of Pharmacy and Pharmacology, vol. 54, no. 3, pp. 365–371, 2002.
[103]  X. Liu, M. Dong, X. Chen, M. Jiang, X. Lv, and G. Yan, “Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba,” Food Chemistry, vol. 105, no. 2, pp. 548–554, 2007.
[104]  J. K. Harper, A. M. Arif, E. J. Ford et al., “Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities,” Tetrahedron, vol. 59, no. 14, pp. 2471–2476, 2003.
[105]  G. Strobel, E. Ford, J. Worapong, et al., “Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities,” Phytochemistry, vol. 60, no. 2, pp. 179–183, 2002.
[106]  A. Kardo?ová and E. Machová, “Antioxidant activity of medicinal plant polysaccharides,” Fitoterapia, vol. 77, no. 5, pp. 367–373, 2006.
[107]  D. Luo and B. Fang, “Structural identification of ginseng polysaccharides and testing of their antioxidant activities,” Carbohydrate Polymers, vol. 72, no. 3, pp. 376–381, 2008.
[108]  C. Sun, J.-W. Wang, L. Fang, X.-D. Gao, and R.-X. Tan, “Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108,” Life Sciences, vol. 75, no. 9, pp. 1063–1073, 2004.
[109]  R. Yu, W. Yang, L. Song, C. Yan, Z. Zhang, and Y. Zhao, “Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris,” Carbohydrate Polymers, vol. 70, no. 4, pp. 430–436, 2007.
[110]  J. Liu, J. Luo, H. Ye, Y. Sun, Z. Lu, and X. Zeng, “Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3,” Carbohydrate Polymers, vol. 78, no. 2, pp. 275–281, 2009.
[111]  Y. C. Song, W. Y. Huang, C. Sun, F. W. Wang, and R. X. Tan, “Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides,” Biological and Pharmaceutical Bulletin, vol. 28, no. 3, pp. 506–509, 2005.
[112]  K. B. Borges, W. D. S. Borges, M. T. Pupo, and P. S. Bonato, “Endophytic fungi as models for the stereoselective biotransformation of thioridazine,” Applied Microbiology and Biotechnology, vol. 77, no. 3, pp. 669–674, 2007.
[113]  M. Doble, A. K. Kruthiventi, and V. G. Gaikar, Eds., Biotransformations and Bioprocesses, Marcel Dekker, New York, NY, USA, 2004.
[114]  B. Suresh, T. Ritu, and G. A. Ravishankar, “Biotransformations as applicable to food industries,” in Food Biotechnology, pp. 1655–1690, Taylor and Francis, New York, NY, USA, 2nd edition, 2006.
[115]  K. B. Borges, W. D. S. Borges, M. T. Pupo, and P. S. Bonato, “Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi,” Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 5, pp. 945–952, 2008.
[116]  J. Aleu and I. G. Collado, “Biotransformations by Botrytis species,” Journal of Molecular Catalysis, vol. 13, no. 4–6, pp. 77–93, 2001.
[117]  M. A. Longo and M. A. Sanromán, “Production of food aroma compounds: microbial and enzymatic methodologies,” Food Technology and Biotechnology, vol. 44, no. 3, pp. 335–353, 2006.
[118]  A. C. Figueiredo, M. J. Almendra, J. G. Barroso, and J. J. C. Scheffer, “Biotransformation of monoterpenes and sesquiterpenes by cell suspension cultures of Achillea millefolium L. ssp. Millefolium,” Biotechnology Letters, vol. 18, no. 8, pp. 863–868, 1996.
[119]  M. Verza, N. S. Arakawa, N. P. Lopes et al., “Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp,” Journal of the Brazilian Chemical Society, vol. 20, no. 1, pp. 195–200, 2009.
[120]  M. Zikmundová, K. Drandarov, L. Bigler, M. Hesse, and C. Werner, “Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona,” Applied and Environmental Microbiology, vol. 68, no. 10, pp. 4863–4870, 2002.
[121]  M. R. Maróstica Jr. and G. M. Pastore, “Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium,” Food Chemistry, vol. 101, no. 1, pp. 345–350, 2007.
[122]  M. Miyazawa, H. Kawazoe, and M. Hyakumachi, “Biotransformation of l-menthol by twelve isolates of soil-borne plant pathogenic fungi (Rhizoctonia solani) and classification of fungi,” Journal of Chemical Technology and Biotechnology, vol. 78, no. 6, pp. 620–625, 2003.
[123]  A. Farooq, S. Tahara, M. I. Choudhary, et al., “Biotransformation of (-)-α-pinene by Botrytis cinerea,” Zeitschrift fur Naturforschung C, vol. 57, no. 3-4, pp. 303–306, 2002.
[124]  A. Farooq, M. I. Choudhary, S. Tahara, A. U. Rahman, K. H. Ba?er, and F. Demirci, “The microbial oxidation of (-)-β-pinene by Botrytis cinerea,” Zeitschrift fur Naturforschung C, vol. 57, no. 7-8, pp. 686–690, 2002.
[125]  J. Zhang, L. Zhang, X. Wang et al., “Microbial transformation of 10-deacetyl-7-epitaxol and 1β- hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis,” Journal of Natural Products, vol. 61, no. 4, pp. 497–500, 1998.
[126]  H. Shibuya, C. Kitamura, S. Maehara et al., “Transformation of Cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp. isolated from Cinchona pubescens,” Chemical and Pharmaceutical Bulletin, vol. 51, no. 1, pp. 71–74, 2003.
[127]  P. Simanjuntak, T. K. Prana, D. Wulandari, A. Dharmawan, E. Sumitro, and M. R. Hendriyanto, “Chemical studies on a curcumin analogue produced by endophytic fungal transformation,” Asian Journal of Applied Sciences, vol. 3, pp. 60–66, 2010.
[128]  D. Z. L. Bastos, I. C. Pimentel, D. A. de Jesus, and B. H. de Oliveira, “Biotransformation of betulinic and betulonic acids by fungi,” Phytochemistry, vol. 68, no. 6, pp. 834–839, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133