全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extravascular Lung Water and Acute Lung Injury

DOI: 10.1155/2012/407035

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute lung injury carries a high burden of morbidity and mortality and is characterised by nonhydrostatic pulmonary oedema. The aim of this paper is to highlight the role of accurate quantification of extravascular lung water in diagnosis, management, and prognosis in “acute lung injury” and “acute respiratory distress syndrome”. Several studies have verified the accuracy of both the single and the double transpulmonary thermal indicator techniques. Both experimental and clinical studies were searched in PUBMED using the term “extravascular lung water” and “acute lung injury”. Extravascular lung water measurement offers information not otherwise available by other methods such as chest radiography, arterial blood gas, and chest auscultation at the bedside. Recent data have highlighted the role of extravascular lung water in response to treatment to guide fluid therapy and ventilator strategies. The quantification of extravascular lung water may predict mortality and multiorgan dysfunction. The limitations of the dilution method are also discussed. 1. Introduction In 1896, the physiologist Starling described the factors that influence fluid transport across semipermeable membranes like capillaries [1]. This description accounted for the net movement of fluids between compartments in relation to capillary and interstitial hydrostatic pressures, capillary and interstitial oncotic pressures, and coefficients of capillary permeability. Pulmonary oedema refers to the accumulation of fluid within the extravascular space of the lung and occurs when the Starling forces are unbalanced. This occurs most commonly from an increased pulmonary capillary hydrostatic pressure or an increased capillary permeability. The estimation of the severity of pulmonary oedema by chest auscultation, radiography, or arterial blood gas analysis is imprecise [2–4]. Chest auscultation may be altered by mechanical ventilation, and bedside chest radiographs in the critical care unit is subject to several technical limitations. There is poor correlation between the chest radiograph scores of pulmonary oedema and the actual amount of EVLW [5]. There is also high interobserver variability when applying the American-European Consensus Conference radiographic criteria for ARDS even amongst experts [6, 7]. Data from experimental studies suggest that EVLW on chest radiography may only be detectable when the lung water increases by more than 35% [8]. Experimental studies have also shown that arterial oxygenation decreased significantly only when the EVLW increases by more than 200% [4].

References

[1]  E. H. Starling, “On the absorption of fluids from the connective tissue spaces,” The Journal of Physiology, vol. 19, no. 4, pp. 312–326, 1896.
[2]  D. Lichtenstein, I. Goldstein, E. Mourgeon, P. Cluzel, P. Grenier, and J. J. Rouby, “Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome,” Anesthesiology, vol. 100, no. 1, pp. 9–15, 2004.
[3]  E. D. Sivak, B. J. Richmond, P. B. O'Donovan, and G. P. Borkowski, “Value of extravascular lung water measurement vs portable chest X-ray in the management of pulmonary edema,” Critical Care Medicine, vol. 11, no. 7, pp. 498–501, 1983.
[4]  P. Scillia, M. Delcroix, P. Lejeune et al., “Hydrostatic pulmonary edema: evaluation with thin-section CT in dogs,” Radiology, vol. 211, no. 1, pp. 161–168, 1999.
[5]  E. D. Sivak, B. J. Richmond, P. B. O'Donovan, and G. P. Borkowski, “Value of extravascular lung water measurement vs portable chest X-ray in the management of pulmonary edema,” Critical Care Medicine, vol. 11, no. 7, pp. 498–501, 1983.
[6]  M. O. Meade, R. J. Cook, G. H. Guyatt et al., “Interobserver variation in interpreting chest radiographs for the diagnosis of acute respiratory distress syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 85–90, 2000.
[7]  G. D. Rubenfeld, E. Caldwell, J. Granton, L. D. Hudson, and M. A. Matthay, “Interobserver variability in applying a radiographic definition for ARDS,” Chest, vol. 116, no. 5, pp. 1347–1353, 1999.
[8]  P. D. Snashall, S. J. Keyes, B. M. Morgan, et al., “The radiographic detection of acute pulmonary oedema. A comparison of radiographic appearances, densitometry and lung water in dogs,” The British Journal of Radiology, vol. 54, no. 640, pp. 277–280, 1981.
[9]  F. Michard, V. Zarka, S. Alaya, S. Sakka, and M. Klein, “Better characterization of acute lung injury/ARDS using lung water,” Chest, vol. 125, no. 3, pp. 1166–1167, 2004.
[10]  G. S. Martin, S. Eaton, M. Mealer, and M. Moss, “Extravascular lung water in patients with severe sepsis: a prospective cohort study,” Critical Care, vol. 9, no. 2, pp. R74–82, 2005.
[11]  A. B. J. Groeneveld and K. H. Polderman, “Acute lung injury, overhydration or both?” Critical Care, vol. 9, no. 2, pp. 136–137, 2005.
[12]  P. R. Eisenberg, J. R. Hansbrough, D. Anderson, and D. P. Schuster, “A prospective study of lung water measurements during patient management in an intensive care unit,” American Review of Respiratory Disease, vol. 136, no. 3, pp. 662–668, 1987.
[13]  S. G. Sakka, C. C. Rühl, U. J. Pfeiffer et al., “Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution,” Intensive Care Medicine, vol. 26, no. 2, pp. 180–187, 2000.
[14]  D. A. Reuter, T. W. Felbinger, K. Moerstedt et al., “Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 16, no. 2, pp. 191–195, 2002.
[15]  F. Michard, A. Schachtrupp, and C. Toens, “Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients,” Critical Care Medicine, vol. 33, no. 6, pp. 1243–1247, 2005.
[16]  J. C. Bock and F. R. Lewis, “Clinical relevance of lung water measurement with the thermal-dye dilution technique,” Journal of Surgical Research, vol. 48, no. 3, pp. 254–265, 1990.
[17]  T. Tagami, S. Kushimoto, Y. Yamamoto et al., “Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study,” Critical Care, vol. 14, no. 5, p. R162, 2010.
[18]  F. Michard, “Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls,” Critical Care Medicine, vol. 35, no. 4, pp. 1186–1192, 2007.
[19]  X. Monnet, N. Anguel, D. Osman, O. Hamzaoui, C. Richard, and J. L. Teboul, “Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS,” Intensive Care Medicine, vol. 33, no. 3, pp. 448–453, 2007.
[20]  A. B. J. Groeneveld and J. Verheij, “Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS,” Intensive Care Medicine, vol. 32, no. 9, pp. 1315–1321, 2006.
[21]  J. Verheij, P. G. H. M. Raijmakers, A. Lingen, and A. B. J. Groeneveld, “Simple vs complex radionuclide methods of assessing capillary protein permeability for diagnosing acute respiratory distress syndrome,” Journal of Critical Care, vol. 20, no. 2, pp. 162–171, 2005.
[22]  A. B. J. Groeneveld, P. G. H. M. Raijmakers, G. J. J. Teule, and L. G. Thijs, “The 67Gallium pulmonary leak index in assessing the severity and course of the adult respiratory distress syndrome,” Critical Care Medicine, vol. 24, no. 9, pp. 1467–1472, 1996.
[23]  P. G. H. M. Raijmakers, A. B. J. Groeneveld, J. A. Rauwerda, G. J. J. Teule, and C. E. Hack, “Acute lung injury after aortic surgery: the relation between lung and leg microvascular permeability to 111indium-labelled transferrin and circulating mediators,” Thorax, vol. 52, no. 10, pp. 866–871, 1997.
[24]  P. G. H. M. Raijmakers, A. B. J. Groeneveld, G. J. J. Teule, and L. G. Thijs, “Diagnostic value of the gallium-67 pulmonary leak index in pulmonary edema,” Journal of Nuclear Medicine, vol. 37, no. 8, pp. 1316–1322, 1996.
[25]  A. B. J. Groeneveld, F. B. Pl?tz, and H. R. Van Genderingen, “Monitoring the permeability edema of ventilator-associated lung injury,” Critical Care Medicine, vol. 33, no. 1, pp. 250–252, 2005.
[26]  M. van der Heijden and A. B. J. Groeneveld, “Extravascular lung water to blood volume ratios as measures of pulmonary capillary permeability in nonseptic critically ill patients,” Journal of Critical Care, vol. 25, no. 1, pp. 16–22, 2010.
[27]  A. B. J. Groeneveld and J. Verheij, “Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS,” Intensive Care Medicine, vol. 32, no. 9, pp. 1315–1321, 2006.
[28]  E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001.
[29]  S. M. Lin, C. D. Huang, H. C. Lin, C. Y. Liu, C. H. Wang, and H. P. Kuo, “A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial,” Shock, vol. 26, no. 6, pp. 551–557, 2006.
[30]  F. Michard and J. L. Teboul, “Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence,” Chest, vol. 121, no. 6, pp. 2000–2008, 2002.
[31]  H. P. Wiedemann, A. P. Wheeler, G. R. Bernard et al., “Comparison of two fluid-management strategies in acute lung injury,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2564–2575, 2006.
[32]  Y. Sakr, J. L. Vincent, and K. Reinhart, “High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury,” Chest, vol. 128, no. 5, pp. 3098–3108, 2005.
[33]  J. P. Mitchell, D. Schuller, F. S. Calandrino, and D. P. Schuster, “Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization,” American Review of Respiratory Disease, vol. 145, no. 5, pp. 990–998, 1992.
[34]  T. Mutoh, K. Kazumata, M. Ajiki, S. Ushikoshi, and S. Terasaka, “Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage,” Stroke, vol. 38, no. 12, pp. 3218–3224, 2007.
[35]  A. Vieillard-Baron, J. M. Schmitt, R. Augarde et al., “Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis,” Critical Care Medicine, vol. 29, no. 8, pp. 1551–1555, 2001.
[36]  A. S. Slutsky, “Mechanical ventilation. American College of Chest Physicians' Consensus Conference,” Chest, vol. 104, no. 6, pp. 1853–1859, 1993.
[37]  G. D. Rubenfeld, “How much PEEP in acute lung injury,” Journal of the American Medical Association, vol. 303, no. 9, pp. 883–884, 2010.
[38]  L. Gattinoni, E. Carlesso, L. Brazzi, and P. Caironi, “Positive end-expiratory pressure,” Current Opinion in Critical Care, vol. 16, no. 1, pp. 39–44, 2010.
[39]  J. C. Myers, T. E. Reilley, and C. T. Cloutier, “Effect of positive end-expiratory pressure on extravascular lung water in porcine acute respiratory failure,” Critical Care Medicine, vol. 16, no. 1, pp. 52–54, 1988.
[40]  R. C. Allison, P. V. Carlile, and B. A. Gray, “Thermodilution measurement of lung water,” Clinics in Chest Medicine, vol. 6, no. 3, pp. 439–457, 1985.
[41]  P. V. Carlile, D. D. Lowery, and B. A. Gray, “Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema,” Journal of Applied Physiology, vol. 60, no. 1, pp. 22–31, 1986.
[42]  R. H. Demling, N. C. Staub, and L. H. Edmunds, “Effect of end expiratory airway pressure on accumulation of extravascular lung water,” Journal of Applied Physiology, vol. 38, no. 5, pp. 907–912, 1975.
[43]  C. R. Cooke, J. M. Kahn, E. Caldwell et al., “Predictors of hospital mortality in a population-based cohort of patients with acute lung injury,” Critical Care Medicine, vol. 36, no. 5, pp. 1412–1420, 2008.
[44]  C. R. Cooke, C. V. Shah, R. Gallop et al., “A simple clinical predictive index for objective estimates of mortality in acute lung injury,” Critical Care Medicine, vol. 37, no. 6, pp. 1913–1920, 2009.
[45]  S. G. Sakka, M. Klein, K. Reinhart, and A. Meier-Hellmann, “Prognostic value of extravascular lung water in critically III patients,” Chest, vol. 122, no. 6, pp. 2080–2086, 2002.
[46]  V. V. Kuzkov, M. Y. Kirov, M. A. Sovershaev et al., “Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury,” Critical Care Medicine, vol. 34, no. 6, pp. 1647–1653, 2006.
[47]  C. R. Phillips, M. S. Chesnutt, and S. M. Smith, “Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival,” Critical Care Medicine, vol. 36, no. 1, pp. 69–73, 2008.
[48]  T. R. Craig, M. J. Duffy, M. Shyamsundar et al., “Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury,” Critical Care Medicine, vol. 38, no. 1, pp. 114–120, 2010.
[49]  F. T. Chung, H. C. Lin, C. H. Kuo et al., “Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis,” PLoS ONE, vol. 5, no. 12, article e15265, 2010.
[50]  J. Zeravik, U. Borg, and U. J. Pfeiffer, “Efficacy of pressure support ventilation dependent on extravascular lung water,” Chest, vol. 97, no. 6, pp. 1412–1419, 1990.
[51]  J. Zeravik and U. J. Pfeiffer, “Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water,” Acta Anaesthesiologica Scandinavica, vol. 33, no. 7, pp. 568–574, 1989.
[52]  A. B. J. Groeneveld and K. H. Polderman, “Acute lung injury, overhydration or both?” Critical Care, vol. 9, no. 2, pp. 136–137, 2005.
[53]  G. S. Martin, S. Eaton, M. Mealer, and M. Moss, “Extravascular lung water in patients with severe sepsis: a prospective cohort study,” Critical Care, vol. 9, no. 2, pp. R74–82, 2005.
[54]  A. Esteban, P. Fernández-Segoviano, F. Frutos-Vivar et al., “Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings,” Annals of Internal Medicine, vol. 141, no. 6, 2004.
[55]  O. Godje, M. Peyerl, T. Seebauer, O. Dewald, and B. Reichart, “Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function,” Chest, vol. 113, no. 4, pp. 1070–1077, 1998.
[56]  P. Rossi, M. Wanecek, A. Rudehill, D. Konrad, E. Weitzberg, and A. Oldner, “Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs,” Critical Care Medicine, vol. 34, no. 5, pp. 1437–1443, 2006.
[57]  L. Oppenheimer, V. B. Elings, and F. R. Lewis, “Thermal-dye lung water measurements: effects of edema and embolization,” Journal of Surgical Research, vol. 26, no. 5, pp. 504–512, 1979.
[58]  M. Janda, T. W. L. Scheeren, J. Bajorat et al., “The Impact of intra-aortic balloon pumping on cardiac output determination by pulmonary arterial and transpulmonary thermodilution in pigs,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 20, no. 3, pp. 320–324, 2006.
[59]  S. G. Sakka, C. C. Rühl, U. J. Pfeiffer et al., “Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution,” Intensive Care Medicine, vol. 26, no. 2, pp. 180–187, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413