全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cognitive Impairment in Heart Failure

DOI: 10.1155/2012/595821

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cognitive impairment (CI) is increasingly recognized as a common adverse consequence of heart failure (HF). Although the exact mechanisms remain unclear, microembolism, chronic or intermittent cerebral hypoperfusion, and/or impaired cerebral vessel reactivity that lead to cerebral hypoxia and ischemic brain damage seem to underlie the development of CI in HF. Cognitive decline in HF is characterized by deficits in one or more cognition domains, including attention, memory, executive function, and psychomotor speed. These deficits may affect patients' decision-making capacity and interfere with their ability to comply with treatment requirements, recognize and self-manage disease worsening symptoms. CI may have fluctuations in severity over time, improve with effective HF treatment or progress to dementia. CI is independently associated with disability, mortality, and decreased quality of life of HF patients. It is essential therefore for health professionals in their routine evaluations of HF patients to become familiar with assessment of cognitive performance using standardized screening instruments. Future studies should focus on elucidating the mechanisms that underlie CI in HF and establishing preventive strategies and treatment approaches. 1. Introduction Heart failure (HF) is a major and growing health problem in the developed world that affects 1-2% of the adult population and 6–10% of people over the age of 65 [1, 2]. HF is associated with frequent hospital admissions, reduced quality of life, significant morbidity, and increased mortality [3–6]. It is estimated that elderly HF patients have high readmission rates ranging from 40 to 50% within 6 months [7]. Significant predictors of HF decompensation and high readmission rates include patients’ poor compliance with therapy and diet restrictions, and their failure to recognize early symptoms of HF deterioration which may be the consequences of cognitive impairment (CI) and poor insight [8]. Several studies have demonstrated that CI is particularly common in HF with 30% to 80% of patients with HF experiencing some degree of cognitive impairment [9, 10]. This wide range in CI prevalence estimates is believed to be the result of diverse study designs, HF severity, age of patients, sample sizes, neuropsychological tests, and diagnostic criteria between different studies. HF adversely affects various aspects of cognitive functioning, including attention, learning ability and delay recall, working memory, executive function, and psychomotor speed [9–11]. Areas of cognition less affected are the

References

[1]  J. J. V. McMurray and M. A. Pfeffer, “Heart failure,” The Lancet, vol. 365, no. 9474, pp. 1877–1889, 2005.
[2]  G. Giamouzis, F. Triposkiadis, J. Butler, D. Westermann, and G. Giannakoulas, “Heart failure,” Cardiology Research and Practice, vol. 2011, Article ID 159608, 2 pages, 2011.
[3]  M. R. Cowie, K. F. Fox, D. A. Wood et al., “Hospitalization of patients with heart failure: a population-based study,” European Heart Journal, vol. 23, no. 11, pp. 877–885, 2002.
[4]  D. W. Baker, D. Einstadter, C. Thomas, and R. D. Cebul, “Mortality trends for 23,505 medicare patients hospitalized with heart failure in Northeast Ohio, 1991 to 1997,” American Heart Journal, vol. 146, no. 2, pp. 258–264, 2003.
[5]  M. J. Calvert, N. Freemantle, and J. G. F. Cleland, “The impact of chronic heart failure on health-related quality of life data acquired in the baseline phase of the CARE-HF study,” European Journal of Heart Failure, vol. 7, no. 2, pp. 243–251, 2005.
[6]  G. Giamouzis, A. Kalogeropoulos, V. Georgiopoulou et al., “Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions,” Journal of Cardiac Failure, vol. 17, no. 1, pp. 54–75, 2011.
[7]  H. M. Krumholz, E. M. Parent, N. Tu et al., “Readmission after hospitalization for congestive heart failure among medicare beneficiaries,” Archives of Internal Medicine, vol. 157, no. 1, pp. 99–104, 1997.
[8]  A. S. Malik, G. Giamouzis, V. V. Georgiopoulou et al., “Patient perception versus medical record entry of health-related conditions among patients with heart failure,” The American Journal of Cardiology, vol. 107, no. 4, pp. 569–572, 2011.
[9]  S. J. Bennett and M. J. Sauve, “Cognitive deficits in patients with heart failure: a review of the literature,” Journal of Cardiovascular Nursing, vol. 18, no. 3, pp. 219–242, 2003.
[10]  R. L. C. Vogels, P. Scheltens, J. M. Schroeder-Tanka, and H. C. Weinstein, “Cognitive impairment in heart failure: a systematic review of the literature,” European Journal of Heart Failure, vol. 9, no. 5, pp. 440–449, 2007.
[11]  R. L. C. Vogels, J. M. Oosterman, B. Van Harten et al., “Profile of cognitive impairment in chronic heart failure,” Journal of the American Geriatrics Society, vol. 55, no. 11, pp. 1764–1770, 2007.
[12]  L. C. Bauer, J. K. Johnson, and B. J. Pozehl, “Cognition in heart failure: an overview of the concepts and their measures,” Journal of the American Academy of Nurse Practitioners, vol. 23, no. 11, pp. 577–585, 2011.
[13]  L. Trojano, R. A. Incalzi, D. Acanfora, C. Picone, P. Mecocci, and F. Rengo, “Cognitive impairment: a key feature of congestive heart failure in the elderly,” Journal of Neurology, vol. 250, no. 12, pp. 1456–1463, 2003.
[14]  G. Zuccalà, G. Onder, E. Marzetti et al., “Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure,” European Heart Journal, vol. 26, no. 3, pp. 226–233, 2005.
[15]  S. Borson, “Cognition, aging, and disabilities: conceptual issues,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 2, pp. 375–382, 2010.
[16]  A. Burns and M. Zaudig, “Mild cognitive impairment in older people,” The Lancet, vol. 360, no. 9349, pp. 1963–1965, 2002.
[17]  A. S. Fleisher, B. B. Sowell, C. Taylor, A. C. Gamst, R. C. Petersen, and L. J. Thal, “Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment,” Neurology, vol. 68, no. 19, pp. 1588–1595, 2007.
[18]  K. Ritchie and S. Lovestone, “The dementias,” The Lancet, vol. 360, no. 9347, pp. 1759–1766, 2002.
[19]  N. Gruhn, F. S. Larsen, S. Boesgaard et al., “Cerebral blood flow in patients with chronic heart failure before and after heart transplantation,” Stroke, vol. 32, no. 11, pp. 2530–2533, 2001.
[20]  T. C. T. F. Alves, J. Rays, R. Fráguas Jr. et al., “Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT,” Journal of Neuroimaging, vol. 15, no. 2, pp. 150–156, 2005.
[21]  G. Zuccalà, G. Onder, C. Pedone et al., “Hypotension and cognitive impairment: selective association in patients with heart failure,” Neurology, vol. 57, no. 11, pp. 1986–1992, 2001.
[22]  A. L. Jefferson, A. Poppas, R. H. Paul, and R. A. Cohen, “Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients,” Neurobiology of Aging, vol. 28, no. 3, pp. 477–483, 2007.
[23]  G. Zuccalà, C. Cattel, E. Manes-Gravina, M. G. Di Niro, A. Cocchi, and R. Bernabei, “Left ventricular dysfunction: a clue to cognitive impairment in older patients with heart failure,” Journal of Neurology Neurosurgery and Psychiatry, vol. 63, no. 4, pp. 509–512, 1997.
[24]  A. L. Jefferson, J. J. Himali, A. S. Beiser et al., “Cardiac index is associated with brain aging: the framingham heart study,” Circulation, vol. 122, no. 7, pp. 690–697, 2010.
[25]  J. D. Putzke, M. A. Williams, B. K. Rayburn, J. K. Kirklin, and T. J. Boll, “The relationship between cardiac function and neuropsychological status among heart transplant candidates,” Journal of Cardiac Failure, vol. 4, no. 4, pp. 295–303, 1998.
[26]  S. A. Agha, A. P. Kalogeropoulos, J. Shih et al., “Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers,” Journal of Cardiac Failure, vol. 15, no. 7, pp. 586–592, 2009.
[27]  C. Qiu, B. Winblad, A. Marengoni, I. Klarin, J. Fastbom, and L. Fratiglioni, “Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study,” Archives of Internal Medicine, vol. 166, no. 9, pp. 1003–1008, 2006.
[28]  D. Georgiadis, M. Sievert, S. Cencetti et al., “Cerebrovascular reactivity is impaired in patients with cardiac failure,” European Heart Journal, vol. 21, no. 5, pp. 407–413, 2000.
[29]  F. Triposkiadis, G. Karayannis, G. Giamouzis, J. Skoularigis, G. Louridas, and J. Butler, “The sympathetic nervous system in heart failure. Physiology, pathophysiology, and clinical implications,” Journal of the American College of Cardiology, vol. 54, no. 19, pp. 1747–1762, 2009.
[30]  M. Shibata, R. Ohtani, M. Ihara, and H. Tomimoto, “White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion,” Stroke, vol. 35, no. 11, pp. 2598–2603, 2004.
[31]  J. R. Marstrand, E. Garde, E. Rostrup et al., “Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities,” Stroke, vol. 33, no. 4, pp. 972–976, 2002.
[32]  J. Hatazawa, E. Shimosegawa, T. Satoh, H. Toyoshima, and T. Okudera, “Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging,” Stroke, vol. 28, no. 10, pp. 1944–1947, 1997.
[33]  M. Mujib, G. Giamouzis, S. A. Agha et al., “Epidemiology of stroke in chronic heart failure patients with normal sinus rhythm: findings from the DIG stroke sub-study,” International Journal of Cardiology, vol. 144, no. 3, pp. 389–393, 2010.
[34]  M. A. Woo, P. M. Macey, G. C. Fonarow, M. A. Hamilton, and R. M. Harper, “Regional brain gray matter loss in heart failure,” Journal of Applied Physiology, vol. 95, no. 2, pp. 677–684, 2003.
[35]  C. A. Sila, “Cognitive impairment in chronic heart failure,” Cleveland Clinic Journal of Medicine, vol. 74, supplement 1, pp. S132–S137, 2007.
[36]  P. M. Pullicino and J. Hart, “Cognitive impairment in congestive heart failure? Embolism vs hypoperfusion,” Neurology, vol. 57, no. 11, pp. 1945–1946, 2001.
[37]  S. J. Pressler, “Cognitive functioning and chronic heart failure: a review of the literature (2002-July 2007),” Journal of Cardiovascular Nursing, vol. 23, no. 3, pp. 239–249, 2008.
[38]  M. T. Ullman, “Contributions of memory circuits to language: the declarative/procedural model,” Cognition, vol. 92, no. 1-2, pp. 231–270, 2004.
[39]  J. Stein, M. Luppa, E. Br?hler, H. H. K?nig, and S. G. Riedel-Heller, “The assessment of changes in cognitive functioning: reliable change indices for neuropsychological instruments in the elderly—a systematic review,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 3, pp. 275–286, 2010.
[40]  J. Hort, J. T. O'Brien, G. Gainotti et al., “EFNS guidelines for the diagnosis and management of Alzheimer's disease,” European Journal of Neurology, vol. 17, no. 10, pp. 1236–1248, 2010.
[41]  P. J. Nestor, T. D. Fryer, and J. R. Hodges, “Declarative memory impairments in Alzheimer's disease and semantic dementia,” NeuroImage, vol. 30, no. 3, pp. 1010–1020, 2006.
[42]  R. A. Bornstein, R. C. Starling, P. D. Myerowitz, and G. J. Haas, “Neuropsychological function in patients with end-stage heart failure before and after cardiac transplantation,” Acta Neurologica Scandinavica, vol. 91, no. 4, pp. 260–265, 1995.
[43]  K. F. Hoth, A. Poppas, D. J. Moser, R. H. Paul, and R. A. Cohen, “Cardiac dysfunction and cognition in older adults with heart failure,” Cognitive and Behavioral Neurology, vol. 21, no. 2, pp. 65–72, 2008.
[44]  R. Antonelli Incalzi, L. Trojano, D. Acanfora et al., “Verbal memory impairment in congestive heart failure,” Journal of Clinical and Experimental Neuropsychology, vol. 25, no. 1, pp. 14–23, 2003.
[45]  R. Schmidt, F. Fazekas, H. Offenbacher, J. Dusleag, and H. Lechner, “Brain magnetic resonance imaging and neuropsychologic evaluation of patients with idiopathic dilated cardiomyopathy,” Stroke, vol. 22, no. 2, pp. 195–199, 1991.
[46]  R. Wolfe, L. Worrall-Carter, K. Foister, N. Keks, and V. Howe, “Assessment of cognitive function in heart failure patients,” European Journal of Cardiovascular Nursing, vol. 5, no. 2, pp. 158–164, 2006.
[47]  C. Hjelm, A. Dahl, A. Brostrom, J. Martensson, B. Johansson, and A. Stromberg, “The influence of heart failure on longitudinal changes in cognition among individuals 80 years of age and older,” Journal of Clinical Nursing, vol. 21, no. 7-8, pp. 994–1003, 2011.
[48]  K. Harkness, C. Demers, G. A. Heckman, and R. S. McKelvie, “Screening for cognitive deficits using the montreal cognitive assessment tool in outpatients ≥?65 years of age with heart failure,” American Journal of Cardiology, vol. 107, no. 8, pp. 1203–1207, 2011.
[49]  D. Mapelli, L. Bardi, M. Mojoli, et al., “Neuropsychological profile in a large group of heart transplant candidates,” Plos One, vol. 6, no. 12, Article ID e28313, 2011.
[50]  P. Athilingam, K. B. King, S. W. Burgin, M. Ackerman, L. A. Cushman, and L. Chen, “Montreal cognitive assessment and mini-mental status examination compared as cognitive screening tools in heart failure,” Heart and Lung, vol. 40, no. 6, pp. 521–529, 2011.
[51]  E. R. Foster, K. B. Cunnane, D. F. Edwards et al., “Executive dysfunction and depressive symptoms associated with reduced participation of people with severe congestive heart failure,” American Journal of Occupational Therapy, vol. 65, no. 3, pp. 306–313, 2011.
[52]  L. Bauer, B. Pozehl, M. Hertzog, J. Johnson, L. Zimmerman, and M. Filipi, “A brief neuropsychological battery for use in the chronic heart failure population,” European Journal of Cardiovascular Nursing. In press.
[53]  C. Beer, E. Ebenezer, S. Fenner et al., “Contributors to cognitive impairment in congestive heart failure: a pilot case-control study,” Internal Medicine Journal, vol. 39, no. 9, pp. 600–605, 2009.
[54]  T. L. Deshields, E. M. McDonough, R. K. Mannen, and L. W. Miller, “Psychological and cognitive status before and after heart transplantation,” General Hospital Psychiatry, vol. 18, no. 6, pp. 62S–69S, 1996.
[55]  N. R. Grubb, C. Simpson, and K. A. Fox, “Memory function in patients with stable, moderate to severe cardiac failure,” American Heart Journal, vol. 140, no. 1, pp. E1–E5, 2000.
[56]  J. D. Putzke, M. A. Williams, F. J. Daniel, B. A. Foley, J. K. Kirklin, and T. J. Boll, “Neuropsychological functioning among heart transplant candidates: a case control study,” Journal of Clinical and Experimental Neuropsychology, vol. 22, no. 1, pp. 95–103, 2000.
[57]  R. G. M. Schl?sser, G. Wagner, and H. Sauer, “Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling,” Neuroscience, vol. 139, no. 1, pp. 91–103, 2006.
[58]  W. Wen, W. Zhu, Y. He et al., “Discrete neuroanatomical networks are associated with specific cognitive abilities in old age,” Journal of Neuroscience, vol. 31, no. 4, pp. 1204–1212, 2011.
[59]  J. C. de Groot, F. E. de Leeuw, M. Oudkerk, et al., “Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study,” Annals of Neurology, vol. 47, pp. 145–151, 2000.
[60]  S. Darvesh and M. Freedman, “Subcortical dementia: a neurobehavioral approach,” Brain and Cognition, vol. 31, no. 2, pp. 230–249, 1996.
[61]  O. P. Almeida and S. Tamai, “Congestive heart failure and cognitive functioning amongst older adults,” Arquivos de Neuro-Psiquiatria, vol. 59, no. 2, pp. 324–329, 2001.
[62]  L. Gorkin, N. K. Norvell, R. C. Rosen et al., “Assessment of quality of life as observed from the baseline data of the Studies of Left Ventricular Dysfunction (SOLVD) trial quality-of-life substudy,” American Journal of Cardiology, vol. 71, no. 12, pp. 1069–1073, 1993.
[63]  J. Gunstad, K. L. MacGregor, R. H. Paul et al., “Cardiac rehabilitation improves cognitive performance in older adults with cardiovascular disease,” Journal of Cardiopulmonary Rehabilitation, vol. 25, no. 3, pp. 173–176, 2005.
[64]  D. Tanne, D. Freimark, A. Poreh et al., “Cognitive functions in severe congestive heart failure before and after an exercise training program,” International Journal of Cardiology, vol. 103, no. 2, pp. 145–149, 2005.
[65]  D. D. Roman, S. H. Kubo, S. Ormaza, G. S. Francis, A. J. Bank, and S. J. Shumway, “Memory improvement following cardiac transplantation,” Journal of Clinical and Experimental Neuropsychology, vol. 19, no. 5, pp. 692–697, 1997.
[66]  P. Moorhouse and K. Rockwood, “Vascular cognitive impairment: current concepts and clinical developments,” The Lancet Neurology, vol. 7, no. 3, pp. 246–255, 2008.
[67]  R. C. K. Chan, D. Shum, T. Toulopoulou, and E. Y. H. Chen, “Assessment of executive functions: review of instruments and identification of critical issues,” Archives of Clinical Neuropsychology, vol. 23, no. 2, pp. 201–216, 2008.
[68]  S. E. Leh, M. Petrides, and A. P. Strafella, “The neural circuitry of executive functions in healthy subjects and parkinson's disease,” Neuropsychopharmacology, vol. 35, no. 1, pp. 70–85, 2010.
[69]  M. B. Jurado and M. Rosselli, “The elusive nature of executive functions: a review of our current understanding,” Neuropsychology Review, vol. 17, no. 3, pp. 213–233, 2007.
[70]  B. K. Woodruff, “Disorders of cognition,” Seminars in Neurology, vol. 31, no. 1, pp. 18–28, 2011.
[71]  T. Iachini, A. Iavarone, V. P. Senese, F. Ruotolo, and G. Ruggiero, “Visuospatial memory in healthy elderly, AD and MCI: a review,” Current Aging Science, vol. 2, no. 1, pp. 43–59, 2009.
[72]  R. R. Schall, R. J. Petrucci, S. C. Brozena, N. C. Cavarocchi, and M. Jessup, “Cognitive function in patients with symptomatic dilated cardiomyopathy before and after cardiac transplantation,” Journal of the American College of Cardiology, vol. 14, no. 7, pp. 1666–1672, 1989.
[73]  J. R. Festa, X. Jia, K. Cheung, et al., “Association of low ejection fraction with impaired verbal memory in older patients with heart failure,” Archives of Neurology, vol. 68, pp. 1021–1026, 2011.
[74]  I. Ekman, B. Fagerberg, and I. Skoog, “The clinical implications of cognitive impairment in elderly patients with chronic heart failure,” The Journal of Cardiovascular Nursing, vol. 16, no. 1, pp. 47–55, 2001.
[75]  S. Debette, C. Bauters, D. Leys, N. Lamblin, F. Pasquier, and P. de Groote, “Prevalence and determinants of cognitive impairment in chronic heart failure patients,” Congestive Heart Failure, vol. 13, no. 4, pp. 205–208, 2007.
[76]  K. M. Stanek, J. Gunstad, R. H. Paul et al., “Longitudinal cognitive performance in older adults with cardiovascular disease: evidence for improvement in heart failure,” Journal of Cardiovascular Nursing, vol. 24, no. 3, pp. 192–197, 2009.
[77]  M. R. Karlsson, M. Edner, P. Henriksson et al., “A nurse-based management program in heart failure patients affects females and persons with cognitive dysfunction most,” Patient Education and Counseling, vol. 58, no. 2, pp. 146–153, 2005.
[78]  J. Cameron, L. Worrall-Carter, K. Page, B. Riegel, S. K. Lo, and S. Stewart, “Does cognitive impairment predict poor self-care in patients with heart failure?” European Journal of Heart Failure, vol. 12, no. 5, pp. 508–515, 2010.
[79]  M. L. Alosco, M. B. Spitznagel, R. Cohen et al., “Cognitive impairment is independently associated with reduced instrumental activities of daily living in persons with heart failure,” The Journal of Cardiovascular Nursing, vol. 27, pp. 44–50, 2012.
[80]  J. R. Wu, D. K. Moser, T. A. Lennie, A. R. Peden, Y. C. Chen, and S. Heo, “Factors influencing medication adherence in patients with heart failure,” Heart and Lung, vol. 37, no. 1, pp. 8.e1–16.e1, 2008.
[81]  V. V. Dickson, N. Tkacs, and B. Riegel, “Cognitive influences on self-care decision making in persons with heart failure,” American Heart Journal, vol. 154, no. 3, pp. 424–431, 2007.
[82]  S. N. McLennan, S. A. Pearson, J. Cameron, and S. Stewart, “Prognostic importance of cognitive impairment in chronic heart failure patients: does specialist management make a difference?” European Journal of Heart Failure, vol. 8, no. 5, pp. 494–501, 2006.
[83]  G. Zuccalà, G. Onder, C. Pedone et al., “Cognitive dysfunction as a major determinant of disability in patients with heart failure: results from a multicentre survey. On behalf of the GIFA (SIGG-ONLUS) Investigators,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 1, pp. 109–112, 2001.
[84]  G. Zuccalà, C. Pedone, M. Cesari et al., “The effects of cognitive impairment on mortality among hospitalized patients with heart failure,” American Journal of Medicine, vol. 115, no. 2, pp. 97–103, 2003.
[85]  S. J. Pressler, U. Subramanian, D. Kareken et al., “Cognitive deficits and health-related quality of life in chronic heart failure,” Journal of Cardiovascular Nursing, vol. 25, no. 3, pp. 189–198, 2010.
[86]  A. Laudisio, E. Marzetti, F. Pagano, A. Cocchi, R. Bernabei, and G. Zuccalà, “Digoxin and cognitive performance in patients with heart failure: a cohort, pharmacoepidemiological survey,” Drugs and Aging, vol. 26, no. 2, pp. 103–112, 2009.
[87]  O. P. Almeida and S. Tamai, “Clinical treatment reverses attentional deficits in congestive heart failure,” BMC Geriatrics, vol. 1, article 2, 2001.
[88]  H. Koide, S. Kobayashi, M. Kitani, T. Tsunematsu, and Y. Nakazawa, “Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia,” Gerontology, vol. 40, no. 5, pp. 279–285, 1994.
[89]  S. Carles Jr., D. Curnier, A. Pathak et al., “Effects of short-term exercise and exercise training on cognitive function among patients with cardiac disease,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 27, no. 6, pp. 395–399, 2007.
[90]  S. J. Pressler, B. Therrien, P. L. Riley, et al., “Nurse-enhanced memory intervention in heart failure: the MEMOIR study,” Journal of Cardiac Failure, vol. 17, pp. 832–843, 2011.
[91]  W. Kakuda, M. Abo, N. Kaito, M. Watanabe, and A. Senoo, “Functional MRI-based therapeutic rTMS strategy for aphasic stroke patients: a case series pilot study,” International Journal of Neuroscience, vol. 120, no. 1, pp. 60–66, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133