全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Elevated Serum C-Reactive Protein Relates to Increased Cerebral Myoinositol Levels in Middle-Aged Adults

DOI: 10.1155/2012/120540

Full-Text   Cite this paper   Add to My Lib

Abstract:

C-reactive protein (CRP), a systemic marker of inflammation, is a risk factor for late life cognitive impairment and dementia, yet the mechanisms that link elevated CRP to cognitive decline are not fully understood. In this study we examined the relationship between CRP and markers of neuronal integrity and cerebral metabolism in middle-aged adults with intact cognitive function, using proton magnetic resonance spectrocospy. We hypothesized that increased levels of circulating CRP would correlate with changes in brain metabolites indicative of early brain vulnerability. Thirty-six individuals, aged 40 to 60, underwent neuropsychological assessment, a blood draw for CRP quantification, and 1H MRS examining N-acetyl-aspartate, myo-inositol, creatine, choline, and glutamate concentrations in occipito-parietal grey matter. Independent of age, sex and education, serum CRP was significantly related to higher cerebral myo-inositol/creatine ratio ( ), a relationship which remained unchanged after adjustment for cardiovascular risk ( , CRP β = 0.322, ). Because these biomarkers are detectable in midlife they may serve as useful indicators of brain vulnerability during the preclinical period when mitigating intervention is still possible. 1. Introduction Much evidence suggests that inflammatory conditions common in midlife such as obesity, atherosclerosis, and Type II diabetes play an important role in the development of dementia [1, 2]. Longitudinal studies have indicated that low-grade systemic inflammation in middle age adds to the risk of late-life cognitive impairment over and above the risk assessment afforded by disease (e.g., hypertension and atherosclerosis) and lifestyle habits (e.g., smoking) [1, 3, 4]. In addition, increases in serum inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP) have been shown to exacerbate cognitive decline in older adults with metabolic syndrome, a condition defined by cooccurring obesity, hypertension, dyslipidemia, and hyperglycemia [2, 5]. The long-term use of anti-inflammatory drugs (NSAIDS), on the other hand, has been associated with a reduction in dementia risk [6–8], lending further support to the idea that sustained activation of an inflammatory immune response can foster neuronal vulnerability beyond what is expected of normal aging. With increasing age, inflammatory changes are appreciable in the brain in the form of astrocyte proliferation and the presence of activated microglia [9]. However, it is still unclear in what capacity midlife inflammation initiates detectable changes in the

References

[1]  R. Schmidt, H. Schmidt, J. D. Curb, K. Masaki, L. R. White, and L. J. Launer, “Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study,” Annals of Neurology, vol. 52, no. 2, pp. 168–174, 2002.
[2]  K. Yaffe, A. Kanaya, K. Lindquist et al., “The metabolic syndrome, inflammation, and risk of cognitive decline,” JAMA, vol. 292, no. 18, pp. 2237–2242, 2004.
[3]  G. Ravaglia, P. Forti, F. Maioli et al., “Blood inflammatory markers and risk of dementia: the Conselice Study of Brain Aging,” Neurobiology of Aging, vol. 28, no. 12, pp. 1810–1820, 2007.
[4]  R. S. Tilvis, M. H. K?h?nen-V?re, J. Jolkkonen, J. Valvanne, K. H. Pitkala, and T. E. Strandberg, “Predictors of cognitive decline and mortality of aged people over a 10-year period,” Journals of Gerontology—Series A, vol. 59, no. 3, pp. M268–M274, 2004.
[5]  M. G. Dik, C. Jonker, H. C. Comijs et al., “Contribution of metabolic syndrome components to cognition in older individuals,” Diabetes Care, vol. 30, no. 10, pp. 2655–2660, 2007.
[6]  P. L. McGeer and E. G. McGeer, “NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies,” Neurobiology of Aging, vol. 28, no. 5, pp. 639–647, 2007.
[7]  P. L. McGeer, M. Schulzer, and E. G. McGeer, “Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies,” Neurology, vol. 47, no. 2, pp. 425–432, 1996.
[8]  C. A. Szekely, J. C. S. Breitner, A. L. Fitzpatrick et al., “NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type,” Neurology, vol. 70, no. 1, pp. 17–24, 2008.
[9]  J. R. Conde and W. J. Streit, “Microglia in the aging brain,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 3, pp. 199–203, 2006.
[10]  D. C. W. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005.
[11]  D. M. Bonifati and U. Kishore, “Role of complement in neurodegeneration and neuroinflammation,” Molecular Immunology, vol. 44, no. 5, pp. 999–1010, 2007.
[12]  J. Urenjak, S. R. Williams, D. G. Gadian, and M. Noble, “Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type- 2 astrocyte progenitors, and immature oligodendrocytes in vitro,” Journal of Neurochemistry, vol. 59, no. 1, pp. 55–61, 1992.
[13]  E. R. Danielsen and B. Ross, Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases, Marcel Dekker, New York, NY, USA, 1999.
[14]  R. E. Jung, R. A. Yeo, S. J. Chiulli, W. L. Sibbitt, and W. M. Brooks, “Myths of neuropsychology: intelligence, neurometabolism, and cognitive ability,” Clinical Neuropsychologist, vol. 14, no. 4, pp. 535–545, 2000.
[15]  W. M. Brooks, S. D. Friedman, and C. Gasparovic, “Magnetic resonance spectroscopy in traumatic brain injury,” The Journal of Head Trauma Rehabilitation, vol. 16, no. 2, pp. 149–164, 2001.
[16]  C. E. Clarke and M. Lowry, “Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes,” European Journal of Neurology, vol. 8, no. 6, pp. 573–577, 2001.
[17]  A. Brand, C. Richter-Landsberg, and D. Leibfritz, “Multinuclear NMR studies on the energy metabolism of glial and neuronal cells,” Developmental Neuroscience, vol. 15, no. 3–5, pp. 289–298, 1993.
[18]  W. Huang, G. E. Alexander, E. M. Daly et al., “High brain myo-inositol levels in the predementia phase of Alzheimer's disease in adults with Down's syndrome: a 1H MRS study,” American Journal of Psychiatry, vol. 156, no. 12, pp. 1879–1886, 1999.
[19]  S. Chantal, M. Labelle, R. W. Bouchard, C. M. J. Braun, and Y. Boulanger, “Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease,” Archives of Neurology, vol. 59, no. 6, pp. 955–962, 2002.
[20]  C. C. Cloak, L. Chang, and T. Ernst, “Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 147–152, 2004.
[21]  K. T. M. Fernando, M. A. McLean, D. T. Chard et al., “Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis,” Brain, vol. 127, no. 6, pp. 1361–1369, 2004.
[22]  K. Kantarci, C. R. Jack, Y. C. Xu et al., “Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study,” Neurology, vol. 55, no. 2, pp. 210–217, 2000.
[23]  D. Wechsler, Wechsler Abbreviated Scale of Intelligence Manual, Harcourt Assessment Company, San Antonio, Tex, USA, 1999.
[24]  P. M. Ridker, “C-Reactive protein and the prediction of cardiovascular events among those at intermediate risk—moving an inflammatory hypothesis toward consensus,” Journal of the American College of Cardiology, vol. 49, no. 21, pp. 2129–2138, 2007.
[25]  K. Yaffe, K. Lindquist, Penninx et al., “Inflammatory markers and cognition in well-functioning African-American and white elders,” Neurology, vol. 61, no. 1, pp. 76–80, 2003.
[26]  R. A. Whitmer, S. Sidney, J. Selby, S. Claiborne Johnston, and K. Yaffe, “Midlife cardiovascular risk factors and risk of dementia in late life,” Neurology, vol. 64, no. 2, pp. 277–281, 2005.
[27]  T. A. Pearson, G. A. Mensah, R. W. Alexander et al., “Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association,” Circulation, vol. 107, no. 3, pp. 499–511, 2003.
[28]  M. D. Lezak, Neuropsychological Assessment, Oxford University Press, New York, NY, USA, 1995.
[29]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[30]  J. C. Morris, A. Heyman, R. C. Mohs et al., “The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease,” Neurology, vol. 39, no. 9, pp. 1159–1165, 1989.
[31]  D. C. Delis, J. H. Kramer, E. Kaplan, and B. A. Ober, California Verbal Learning Test (CVLT-II) Manual, Harcourt Assessment Company, San Antonio, Tex, USA, 2000.
[32]  D. Wechsler, Manual for the Wechsler Adult Intelligence Scale, The Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 1979.
[33]  P. Eslinger, The Iowa Screening Battery for Mental Decline, University of Iowa College of Medicine, Ames, Iowa, USA, 1984.
[34]  R. Reitan, “Validity of the Trail Making test as an indicator of organic brain damage,” Perceptual & Motor Skills, vol. 8, pp. 271–276, 1958.
[35]  H. Klove and F. M. Forster, “Clinical neuropsychology,” The Medical Clinics of North America, vol. 47, pp. 1647–1658, 1963.
[36]  A. T. Beck, R. A. Steer, and G. K. Brown, BDI-II Manual, The Psychological Corporation, Fort Worth, Tex, USA, 1996.
[37]  M. Niezel, D. Bernstein, and R. Russel, “Assessment of anxiety and fear,” in Behavioral Assessment: A Practical Handbook, A. S. Bellack and M. Hersen, Eds., Pergamon Press, Oxford, UK, 1998.
[38]  S. W. Provencher, “Estimation of metabolite concentrations from localized in vivo proton NMR spectra,” Magnetic Resonance in Medicine, vol. 30, no. 6, pp. 672–679, 1993.
[39]  P. A. Narayana, “Magnetic resonance spectroscopy in the monitoring of multiple sclerosis,” Journal of Neuroimaging, vol. 15, no. 4, supplement, pp. 46S–57S, 2005.
[40]  W. A. Kukull, R. Higdon, J. D. Bowen et al., “Dementia and Alzheimer disease incidence: a prospective cohort study,” Archives of Neurology, vol. 59, no. 11, pp. 1737–1746, 2002.
[41]  L. Letenneur, V. Gilleron, D. Commenges, C. Helmer, J. M. Orgogozo, and J. F. Dartigues, “Are sex and educational level independent predictors of dementia and Alzheimer's disease? Incidence data from the PAQUID project,” Journal of Neurology Neurosurgery and Psychiatry, vol. 66, no. 2, pp. 177–183, 1999.
[42]  M. J. Engelhart, M. I. Geerlings, J. Meijer et al., “Inflammatory protemI in plasma and the risk of dementia—the Rotterdam Study,” Archives of Neurology, vol. 61, no. 5, pp. 668–672, 2004.
[43]  P. L. McGeer and E. G. McGeer, “Innate immunity, local inflammation, and degenerative disease,” Science of Aging Knowledge Environment, vol. 2002, no. 29, article re3, 2002.
[44]  H. Wersching, T. Duning, H. Lohmann et al., “Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function,” Neurology, vol. 74, no. 13, pp. 1022–1029, 2010.
[45]  M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” The Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003.
[46]  J. Gussekloo, M. C. L. Schaap, M. Fr?lich, G. J. Blauw, and R. G. J. Westendorp, “C-reactive protein is a strong but nonspecific risk factor of fatal stroke in elderly persons,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1047–1051, 2000.
[47]  V. Pasceri, J. T. Willerson, and E. T. H. Yeh, “Direct proinflammatory effect of C-reactive protein on human endothelial cells,” Circulation, vol. 102, no. 18, pp. 2165–2168, 2000.
[48]  P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women,” The New England Journal of Medicine, vol. 342, no. 12, pp. 836–843, 2000.
[49]  M. Saito, T. Ishimitsu, J. Minami, H. Ono, M. Ohrui, and H. Matsuoka, “Relations of plasma high-sensitivity C-reactive protein to traditional cardiovascular risk factors,” Atherosclerosis, vol. 167, no. 1, pp. 73–79, 2003.
[50]  J. Gunstad, L. Bausserman, R. H. Paul et al., “C-reactive protein, but not homocysteine, is related to cognitive dysfunction in older adults with cardiovascular disease,” Journal of Clinical Neuroscience, vol. 13, no. 5, pp. 540–546, 2006.
[51]  N. Raz, K. M. Rodrigue, K. M. Kennedy, and J. D. Acker, “Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults,” Neuropsychology, vol. 21, no. 2, pp. 149–157, 2007.
[52]  G. Stebbins, M. Carrillo, M. Moseley, et al., “Microstructural integrity of normal-appearing white matter in ParkmIon’s disease: a diffusion tensor imaging study with behavioral correlates,” Neurology, vol. 58, article A200, 2002.
[53]  T. Yoshiura, F. Mihara, K. Ogomori, A. Tanaka, K. Kaneko, and K. Masuda, “Diffusion tensor in posterior cingulate gyrus: correlation with cognitive decline in Alzheimer's disease,” NeuroReport, vol. 13, no. 17, pp. 2299–2302, 2002.
[54]  M. Filippi and M. A. Rocca, “MRI aspects of the “inflammatory phase” of multiple sclerosis,” Neurological Sciences, vol. 24, no. 5, pp. S275–S278, 2003.
[55]  S. T. Engeiter, J. M. Provenzale, J. R. Petrella, D. M. Delong, and J. R. MacFall, “The effect of aging on the apparent diffusion coefficient of normal-appearing white matter,” American Journal of Roentgenology, vol. 175, no. 2, pp. 425–430, 2000.
[56]  J. A. Kim, M. Montagnani, K. K. Kwang, and M. J. Quon, “Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms,” Circulation, vol. 113, no. 15, pp. 1888–1904, 2006.
[57]  S. Lavi, D. Gaitini, V. Milloul, and G. Jacob, “Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction,” American Journal of Physiology, vol. 291, no. 4, pp. H1856–H1861, 2006.
[58]  K. M. Flegal, M. D. Carroll, C. L. Ogden, and C. L. Johnson, “Prevalence and trends in obesity among US adults, 1999-2000,” JAMA, vol. 288, no. 14, pp. 1723–1727, 2002.
[59]  M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” JAMA, vol. 282, no. 22, pp. 2131–2135, 1999.
[60]  A. E. Caballero, “Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease,” Obesity Research, vol. 11, no. 11, pp. 1278–1289, 2003.
[61]  C. R. W. Kuhlmann, L. Librizzi, D. Closhen et al., “Mechanisms of C-reactive protein-induced blood-brain barrier disruption,” Stroke, vol. 40, no. 4, pp. 1458–1466, 2009.
[62]  N. J. Abbott, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” Journal of Anatomy, vol. 200, no. 5, pp. 523–534, 2002.
[63]  T. K. Shonk, R. A. Moats, P. Gifford et al., “Probable Alzheimer disease: diagnosis with proton MR spectroscopy,” Radiology, vol. 195, no. 1, pp. 65–72, 1995.
[64]  W. E. Klunk, C. Xu, K. Panchalingam, R. J. McClure, and J. W. Pettegrew, “Quantitative 1H and 31 MRS of PCA extracts of postmortem Alzheimer's disease brain,” Neurobiology of Aging, vol. 17, no. 3, pp. 349–357, 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133