全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Depression Is Associated with Cognitive Dysfunction in Older Adults with Heart Failure

DOI: 10.1155/2011/368324

Full-Text   Cite this paper   Add to My Lib

Abstract:

Persons with heart failure (HF) frequently exhibit cognitive impairment with deficits in attention and memory. Depression is common in HF though its possible contribution to cognitive impairment is unknown. Cognitive dysfunction and depression may share common mechanisms in HF, as both are associated with similar abnormalities on neuroimaging. A total of 116 participants with HF ( 6 8 . 5 3 ± 9 . 3 0 years) completed a neuropsychological battery and self-report measures of depression. Regression models showed depression incrementally and independently predicted test performance in all cognitive domains. Follow-up partial correlations revealed that greater depressive symptoms were associated with poorer performance on tests of attention, executive function, psychomotor speed, and language. These results indicate that depressive symptoms are associated with poorer cognitive performance in HF though further work is needed to clarify mechanisms for this association and possible cognitive benefits of treating depression in persons with HF. 1. Introduction Heart failure (HF) is prevalent and now affects more than five million Americans [1]. Older adults with HF have high rates of mortality, hospital admissions, and debilitating symptoms such as shortness of breath, fatigue, and susceptibility to other medical problems [2]. Though less frequently examined, mental health issues are common in persons with HF. Many patients report decline in memory and other cognitive abilities and an estimated 25% to 75% of HF patients exhibit impairment on neuropsychological testing compared to normative data [3]. Deficits emerge in multiple cognitive abilities, specifically various types of memory [4, 5]. Executive functions such as attention and problem solving are also impaired. Similarly, depression is also common in persons with HF [6]. Though rates vary across studies, an estimated 21%–36% of heart failure patients can be diagnosed with depression, on the basis of both clinical diagnoses and elevated rates on various depression questionnaires [7, 8]. Few studies have directly examined the association between cognitive impairment and depression in persons with HF despite the likelihood of common mechanisms. For example, persons with HF exhibit numerous pathological changes on neuroimaging, including greater atrophy and the presence of white matter hyperintensities, frequently in frontal brain regions [9]. In turn, these changes are associated with increased depressive symptoms in healthy older adults and other patient samples [10, 11]. Such findings suggest that depression

References

[1]  D. Lloyd-Jones, R. Adams, M. Carnethon et al., “Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 119, no. 3, pp. e21–181, 2009.
[2]  R. P. Morrissey, L. Czer, and P. K. Shah, “Chronic heart failure: current evidence, challenges to therapy, and future directions,” American Journal of Cardiovascular Drugs, vol. 11, no. 3, pp. 153–171, 2011.
[3]  K. F. Hoth, “Heart failure and cognitive function,” in Neuropsychology and Cardiovascular Disease, R. Cohen and J. Gunstad, Eds., pp. 204–217, Oxford University Press, New York, NY, USA, 2009.
[4]  S. J. Pressler, K. Jinshil, P. Riley, D. L. Ronis, and I. Gradus-Pizlo, “Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction,” Journal of Cardiac Failure, vol. 16, no. 9, pp. 750–760, 2010.
[5]  R. L. Vogels, J. M. Oosterman, B. van Harten et al., “Profile of cognitive impairment in chronic heart failure,” Journal of the American Geriatrics Society, vol. 55, no. 11, pp. 1764–1770, 2007.
[6]  W. Jiang, J. Alexander, E. Christopher, et al., “Relationship of depression to increased risk of mortality and rehospitalization in patients with cardiac heart failure,” Archives of Internal Medicine, vol. 162, no. 3, pp. 362–364, 2001.
[7]  T. Rutledge, V. A. Reis, S. E. Linke, B. H. Greenberg, and P. J. Mills, “Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes,” Journal of the American College of Cardiology, vol. 48, no. 8, pp. 1527–1537, 2006.
[8]  H. G. Koenig, “Depression in hospitalized older patients with congestive heart failure,” General Hospital Psychiatry, vol. 20, no. 1, pp. 29–43, 1998.
[9]  R. L. Vogels, W. M. van der Flier, B. van Harten et al., “Brain magnetic resonance imaging abnormalities in patients with heart failure,” European Journal of Heart Failure, vol. 9, no. 10, pp. 1003–1009, 2007.
[10]  J. R. C. Almeida, T. C. T. F. Alves, M. Wajngarten et al., “Late-life depression, heart failure and frontal white matter hyperintensity: a structural magnetic resonance imaging study,” Brazilian Journal of Medical and Biological Research, vol. 38, no. 3, pp. 431–436, 2005.
[11]  H. S. Mayberg, “Frontal lobe dysfunction in secondary depression,” Psychiatric Annals, vol. 24, no. 12, pp. 643–647, 1994.
[12]  E. Strauss, E. M. S. Sherman, and O. Spreen, A Compendium of Neuropsychological Tests, Oxford University Press, New York, NY, USA, 3rd edition, 1991.
[13]  D. R. Gifford and J. L. Cummings, “Evaluating dementia screening tests: methodologic standards to rate their performance,” Neurology, vol. 52, no. 2, pp. 224–227, 1999.
[14]  A. Slachevsky and B. Dubois, “Frontal assessment battery and differential diagnosis of frontotemporal dementia and Alzheimer Disease,” Archives of Neurology, vol. 61, no. 7, pp. 1104–1107, 2004.
[15]  D. Delis, J. Kramer, E. Kaplan, and B. Ober, “California verbal learning test-second edition: adult version,” Psychological Corporation, 2000.
[16]  D. Loring, R. C. Martin, K. J. Meador, and G. P. Lee, “Psychometric construction of the Rey-Osterrieth complex figure: methodological considerations and interrater reliability,” Archives of Clinical Neuropsychology, vol. 5, no. 1, pp. 1–14, 1990.
[17]  D. B. Cooper, M. Epker, L. Lacritz et al., “Effects of practice on category fluency in Alzheimer's disease,” Clinical Neuropsychologist, vol. 15, no. 1, pp. 125–128, 2001.
[18]  A. T. Beck, R. A. Steer, and G. K. Brown, Beck Depression Inventory, The Psychological Corporation, San Antonio, Tex, USA, 2nd edition, 1996.
[19]  C. J. Jones and R. E. Rikli, “Measuring functional fitness of older adults,” The Journal on Active Aging, vol. 2, no. 4, pp. 24–30, 2002.
[20]  D. I. Bulas, A. M. Jones, J. J. Seibert, C. Driscoll, R. O'Donnell, and R. J. Adams, “Transcranial Doppler (TCD) screening for stroke prevention in sickle cell anemia: pitfalls in technique variation,” Pediatric Radiology, vol. 30, no. 11, pp. 733–738, 2000.
[21]  A. T. Beck, G. Brown, and R. A. Steer, “Sex differences on the revised Beck Depression Inventory for outpatients with affective disorders,” Journal of Personality Assessment, vol. 53, no. 4, pp. 693–702, 1989.
[22]  K. Harkness, C. Demers, G. A. Heckman, and R. S. McKelvie, “Screening for cognitive deficits using the Montreal cognitive assessment tool in patients 65 years of age with heart failure,” The American Journal of Cardiology, vol. 107, no. 8, pp. 1203–1207, 2011.
[23]  M. L. Alosco, M. B. Spitznagel, R. Cohen et al., “Cognitive impairment is independently associated with reduced instrumental activities of daily living in persons with heart failure,” Journal of Cardiovascular Nursing. In press.
[24]  M. A. Silver, “Depression and heart failure: an overview of what we know and don't know,” Cleveland Clinic Journal of Medicine, vol. 77, supplement 3, pp. S7–S11, 2010.
[25]  M. C. Zuluaga, P. Guallar-Castillón, C. Rodríguez-Pascual, M. Conde-Herrera, P. Conthe, and F. Rodríguez-Artalejo, “Mechanisms of the association between depressive symptoms and long-term mortality in heart failure,” American Heart Journal, vol. 159, no. 2, pp. 231–237, 2010.
[26]  K. Kaila, M. J. Haykowsky, R. B. Thompson, and D. Ian Paterson, “Heart failure with preserved ejection fraction in the elderly: scope of the problem,” Heart Failure Review. In press.
[27]  R. J. Porter, P. Gallagher, J. M. Thompson, and A. H. Young, “Neurocognitive impairment in drug-free patients with major depressive disorder,” The British Journal of Psychiatry, vol. 182, pp. 214–220, 2003.
[28]  C. H. Wilkins, J. Mathews, and Y. I. Sheline, “Late life depression with cognitive impairment: evaluation and treatment,” Clinical Interventions in Aging, vol. 4, no. 1, pp. 51–57, 2009.
[29]  D. J. Oathes and W. J. Ray, “Depressed mood, index finger force and motor cortex stimulation: a transcranial magnetic stimulation (TMS) study,” Biological Psychology, vol. 72, no. 3, pp. 271–277, 2006.
[30]  A. J. Grippo and A. K. Johnson, “Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models,” Stress, vol. 12, no. 1, pp. 1–21, 2009.
[31]  C. A. Smith, G. T. Stebbins, R. E. Bartt et al., “White matter anisotropy and depression symptoms in patients with HIV,” The Journal of Neuropsychiatry and Clinical Neurosciences, vol. 20, no. 4, pp. 458–465, 2008.
[32]  H. J. Aizenstein, M. A. Butters, M. Wu et al., “Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomena,” American Journal of Geriatric Psychiatry, vol. 17, no. 1, pp. 30–42, 2009.
[33]  E. A. Crocco, K. Castro, and D. A. Loewenstein, “How late-life depression affects cognition: neural mechanisms,” Current Psychiatry Reports, vol. 12, no. 1, pp. 34–38, 2010.
[34]  Y. I. Sheline, J. L. Price, S. N. Vaishnavi, et al., “Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors,” The American Journal of Psychiatry, vol. 165, no. 4, pp. 524–553, 2008.
[35]  E. L. Fosbol, G. H. Gislason, H. E. Poulsen et al., “Prognosis in heart failure and the value of β-blockers are altered by the use of antidepressants and depend on the type of antidepressants used,” Circulation: Heart Failure, vol. 2, no. 6, pp. 582–590, 2009.
[36]  C. M. O'Connor, W. Jiang, M. Kuchibhatla, et al., “Safety and efficacy of sertraline for depression in patients with heart failure,” Journal of the American College of Cardiology, vol. 56, no. 9, pp. 692–699, 2010.
[37]  L. K. Obler, E. Rykhlevskaia, D. Schnyer et al., “Bilateral brain regions associated with naming in older adults,” Brain and Language, vol. 113, no. 3, pp. 113–123, 2010.
[38]  D. M. Jacobs, M. Sano, G. Dooneief, K. Marder, K. L. Bell, and Y. Stern, “Neuropsychological detection and characterization of preclinical Alzheimer's disease,” Neurology, vol. 45, no. 5, pp. 957–962, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133