全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vascular Pathology and Blood-Brain Barrier Disruption in Cognitive and Psychiatric Complications of Type 2 Diabetes Mellitus

DOI: 10.1155/2011/609202

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vascular pathology is recognized as a principle insult in type 2 diabetes mellitus (T2DM). Co-morbidities such as structural brain abnormalities, cognitive, learning and memory deficits are also prevailing in T2DM patients. We previously suggested that microvascular pathologies involving blood-brain barrier (BBB) breakdown results in leakage of serum-derived components into the brain parenchyma, leading to neuronal dysfunction manifested as psychiatric illnesses. The current postulate focuses on the molecular mechanisms controlling BBB permeability in T2DM, as key contributors to the pathogenesis of mental disorders in patients. Revealing the mechanisms underlying BBB dysfunction and inflammatory response in T2DM and their role in metabolic disturbances, abnormal neurovascular coupling and neuronal plasticity, would contribute to the understanding of the mechanisms underlying psychopathologies in diabetic patients. Establishing this link would offer new targets for future therapeutic interventions. 1. Introduction: The Vascular Hypothesis Macro- and microvascular complications involving endothelial dysfunction are central to the pathogenesis and clinical manifestations of type 2 diabetes mellitus (T2DM) [1]. Structural brain abnormalities [2–7] and cognitive, learning and memory deficits were demonstrated in T2DM patients [8–10]. We recently published a hypothesis paper suggesting that a primary vascular pathology involving inflammatory cascade and Blood-Brain Barrier (BBB) breakdown, will result in the leakage of serum-derived vascular components into the brain tissue and may cause brain dysfunction which, under some conditions (extent, duration, and/or location), will result in disturbed thinking processes, mood, and behavior, such as those characterizing psychiatric illnesses [11]. The current postulate focuses on inflammation and molecular mechanisms controlling BBB permeability in T2DM as key contributors to the pathogenesis of mental disorders in diabetic patients and suggests novel targets for the prevention and treatment of cognitive and psychiatric complications. 2. Type 2 Diabetes Mellitus and Vascular Pathology T2DM is a multifactorial metabolic disorder. The underlying etiology, pathophysiology and complications of diabetes are still being elucidated (for review see [12]). T2DM is characterized by chronic abnormal high blood glucose levels (hyperglycemia), insulin resistance, and a relative insulin secretion defect [13]. Induction of insulin resistance is linked to obesity and activation of neuroendocrine and inflammatory responses [14–16].

References

[1]  M. Stumvoll, B. J. Goldstein, and T. W. Van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet, vol. 365, no. 9467, pp. 1333–1346, 2005.
[2]  T. Pirttila, R. Jarvenpaa, P. Laippala, and H. Frey, “Brain atrophy on computerized axial tomography scans: interaction of age, diabetes and general morbidity,” Gerontology, vol. 38, no. 5, pp. 285–291, 1992.
[3]  Y. Araki, M. Nomura, H. Tanaka et al., “MRI of the brain in diabetes mellitus,” Neuroradiology, vol. 36, no. 2, pp. 101–103, 1994.
[4]  T. Den Heijer, S. E. Vermeer, E. J. Van Dijk et al., “Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI,” Diabetologia, vol. 46, no. 12, pp. 1604–1610, 2003.
[5]  B. Van Harten, F. E. De Leeuw, H. C. Weinstein, P. Scheltens, and G. J. Biessels, “Brain imaging in patients with diabetes: a systematic review,” Diabetes Care, vol. 29, no. 11, pp. 2539–2548, 2006.
[6]  S. M. Gold, I. Dziobek, V. Sweat et al., “Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes,” Diabetologia, vol. 50, no. 4, pp. 711–719, 2007.
[7]  P. L. Yau, D. C. Javier, C. M. Ryan et al., “Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus,” Diabetologia, vol. 53, no. 11, pp. 2298–2306, 2010.
[8]  A. M. Abbatecola and G. Paolisso, “Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) Trial,” Diabetes Care, vol. 32, no. 8, p. e102, 2009.
[9]  D. G. Bruce, W. A. Davis, G. P. Casey et al., “Predictors of cognitive impairment and dementia in older people with diabetes,” Diabetologia, vol. 51, no. 2, pp. 241–248, 2008.
[10]  A. M. Tiehuis, Y. van der Graaf, F. L. Visseren et al., “Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease,” Stroke, vol. 39, no. 5, pp. 1600–1603, 2008.
[11]  H. Shalev, Y. Serlin, and A. Friedman, “Breaching the blood-brain barrier as a gate to psychiatric disorder,” Cardiovascular Psychiatry and Neurology, vol. 2009, Article ID 278531, 7 pages, 2009.
[12]  P. N. Surampudi, J. John-Kalarickal, and V. A. Fonseca, “Emerging concepts in the pathophysiology of type 2 diabetes mellitus,” Mount Sinai Journal of Medicine, vol. 76, no. 3, pp. 216–226, 2009.
[13]  Y. Lin and Z. Sun, “Current views on type 2 diabetes,” Journal of Endocrinology, vol. 204, no. 1, pp. 1–11, 2010.
[14]  K. E. Wellen and G. S. Hotamisligil, “Obesity-induced inflammatory changes in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1785–1788, 2003.
[15]  H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003.
[16]  S. H. Golden, M. Lazo, M. Carnethon et al., “Examining a bidirectional association between depressive symptoms and diabetes,” Journal of the American Medical Association, vol. 299, no. 23, pp. 2751–2759, 2008.
[17]  S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.
[18]  J. B. McGill, “Improving microvascular outcomes in patients with diabetes through management of hypertension,” Postgraduate Medicine, vol. 121, no. 2, pp. 89–101, 2009.
[19]  P. M. Ridker, “Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity,” Nutrition Reviews, vol. 65, no. 12, pp. S253–S259, 2007.
[20]  P. Geraldes and G. L. King, “Activation of protein kinase C isoforms and its impact on diabetic complications,” Circulation Research, vol. 106, no. 8, pp. 1319–1331, 2010.
[21]  S. I. Yamagishi and T. Imaizumi, “Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy,” Current Pharmaceutical Design, vol. 11, no. 18, pp. 2279–2299, 2005.
[22]  M. Ristow, “Neurodegenetive disorders associated with diabetes mellitus,” Journal of Molecular Medicine, vol. 82, no. 8, pp. 510–529, 2004.
[23]  B. T. Hawkins and T. P. Davis, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacological Reviews, vol. 57, no. 2, pp. 173–185, 2005.
[24]  N. J. Abbott, L. Ronnback, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006.
[25]  B. V. Zlokovic, “The blood-brain barrier in health and chronic neurodegenerative disorders,” Neuron, vol. 57, no. 2, pp. 178–201, 2008.
[26]  P. S. Tofts, G. Brix, D. L. Buckley et al., “Estimating kinetic parameters from dynamic contrast-enhanced T-weighted MRI of a diffusable tracer: standardized quantities and symbols,” Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223–232, 1999.
[27]  G. Zaharchuk, “Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability,” American Journal of Neuroradiology, vol. 28, no. 10, pp. 1850–1858, 2007.
[28]  O. Tomkins, I. Shelef, I. Kaizerman et al., “Blood-brain barrier disruption in post-traumatic epilepsy,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 7, pp. 774–777, 2008.
[29]  N. Marchi, P. Rasmussen, M. Kapural et al., “Peripheral markers of brain damage and blood-brain barrier dysfunction,” Restorative Neurology and Neuroscience, vol. 21, no. 3-4, pp. 109–121, 2003.
[30]  S. Nag, R. Venugopalan, and D. J. Stewart, “Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown,” Acta Neuropathologica, vol. 114, no. 5, pp. 459–469, 2007.
[31]  S. Nag, J. L. Manias, and D. J. Stewart, “Expression of endothelial phosphorylated caveolin-1 is increased in brain injury,” Neuropathology and Applied Neurobiology, vol. 35, no. 4, pp. 417–426, 2009.
[32]  J. Zhao, A. N. Moore, J. B. Redell, and P. K. Dash, “Enhancing expression of Nrf2-driven genes protects the blood-brain barrier after brain injury,” Journal of Neuroscience, vol. 27, no. 38, pp. 10240–10248, 2007.
[33]  D. Yeung, J. L. Manias, D. J. Stewart, and S. Nag, “Decreased junctional adhesion molecule-A expression during blood-brain barrier breakdown,” Acta Neuropathologica, vol. 115, no. 6, pp. 635–642, 2008.
[34]  T. Higashida, C. W. Kreipke, J. A. Rafols, et al., “The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury,” Journal of Neurosurgery, vol. 114, no. 1, pp. 92–101, 2011.
[35]  P. Dore-Duffy, C. Owen, R. Balabanov, S. Murphy, T. Beaumont, and J. A. Rafols, “Pericyte migration from the vascular wall in response to traumatic brain injury,” Microvascular Research, vol. 60, no. 1, pp. 55–69, 2000.
[36]  S. Nag, J. L. Takahashi, and D. W. Kilty, “Role of vascular endothelial growth factor in blood-brain barrier breakdown and angiogenesis in brain trauma,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 8, pp. 912–921, 1997.
[37]  F. Marceau and D. Regoli, “Bradykinin receptor ligands: therapeutic perspectives,” Nature Reviews Drug Discovery, vol. 3, no. 10, pp. 845–852, 2004.
[38]  L. M. F. Leeb-Lundberg, “Bradykinin specificity and signaling at GPR100 and B kinin receptors,” British Journal of Pharmacology, vol. 143, no. 8, pp. 931–932, 2004.
[39]  M. Schwaninger, S. Sallmann, N. Petersen et al., “Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-κB,” Journal of Neurochemistry, vol. 73, no. 4, pp. 1461–1466, 1999.
[40]  M. A. Deli, L. Descamps, M. P. Dehouck et al., “Exposure of tumor necrosis factor-α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin,” Journal of Neuroscience Research, vol. 41, no. 6, pp. 717–726, 1995.
[41]  N. Didier, I. A. Romero, C. Créminon, A. Wijkhuisen, J. Grassi, and A. Mabondzo, “Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability,” Journal of Neurochemistry, vol. 86, no. 1, pp. 246–254, 2003.
[42]  J. D. Huber, R. D. Egleton, and T. P. Davis, “Molecular physiology and pathophysiology of tight junctions in the blood -brain barrier,” Trends in Neurosciences, vol. 24, no. 12, pp. 719–725, 2001.
[43]  Y. Gursoy-Ozdemir, J. Qiu, N. Matsuoka et al., “Cortical spreading depression activates and upregulates MMP-9,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1447–1455, 2004.
[44]  W. G. Mayhan, “Effect of diabetes mellitus on disruption of the blood-brain barrier during acute hypertension,” Brain Research, vol. 534, no. 1-2, pp. 106–110, 1990.
[45]  M. H. Horani and A. D. Mooradian, “Effect of diabetes on the blood brain barrier,” Current Pharmaceutical Design, vol. 9, no. 10, pp. 833–840, 2003.
[46]  J. Dai, G. F. J. M. Vrensen, and R. O. Schlingemann, “Blood-brain barrier integrity is unaltered in human brain cortex with diabetes mellitus,” Brain Research, vol. 954, no. 2, pp. 311–316, 2002.
[47]  W. D. Dietrich, O. Alonso, and R. Busto, “Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats,” Stroke, vol. 24, no. 1, pp. 111–116, 1993.
[48]  H. Kamada, F. Yu, C. Nito, and P. H. Chan, “Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction,” Stroke, vol. 38, no. 3, pp. 1044–1049, 2007.
[49]  J. M. Starr, J. M. Wardlaw, K. Ferguson, A. MacLullich, I. J. Deary, and I. Marshall, “Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 1, pp. 70–76, 2003.
[50]  M. R. Hovsepyan, M. J. Haas, A. S. Boyajyan et al., “Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus,” Neuroscience Letters, vol. 369, no. 3, pp. 224–227, 2004.
[51]  S. J. Vannucci, E. M. Gibbs, and I. A. Simpson, “Glucose utilization and glucose transporter proteins GLUT-1 and GLUT-3 in brains of diabetic (db/db) mice,” American Journal of Physiology, vol. 272, no. 2, pp. E267–E274, 1997.
[52]  W. M. Pardridge, D. Triguero, and C. R. Farrell, “Downregulation of blood-brain barrier glucose transporter in experimental diabetes,” Diabetes, vol. 39, no. 9, pp. 1040–1044, 1990.
[53]  S. Pennathur and J. W. Heinecke, “Oxidative stress and endothelial dysfunction in vascular disease,” Current Diabetes Reports, vol. 7, no. 4, pp. 257–264, 2007.
[54]  V. B. Schrauwen-Hinderling, M. Roden, M. E. Kooi, M. K. C. Hesselink, and P. Schrauwen, “Muscular mitochondrial dysfunction and type 2 diabetes mellitus,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 6, pp. 698–703, 2007.
[55]  Y. Lin, M. W. Rajala, J. P. Berger, D. E. Moller, N. Barzilai, and P. E. Scherer, “Hyperglycemia-induced production of acute phase reactants in adipose tissue,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 42077–42083, 2001.
[56]  C. L. Scott, “Diagnosis, prevention, and intervention for the metabolic syndrome,” American Journal of Cardiology, vol. 92, no. 1, pp. 35i–42i, 2003.
[57]  R. Meerwaldt, C. J. Zeebregts, G. Navis, J. L. Hillebrands, J. D. Lefrandt, and A. J. Smit, “Accumulation of advanced glycation end products and chronic complications in ESRD treated by dialysis,” American Journal of Kidney Diseases, vol. 53, no. 1, pp. 138–150, 2009.
[58]  R. Piga, Y. Naito, S. Kokura, O. Handa, and T. Yoshikawa, “Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells,” Atherosclerosis, vol. 193, no. 2, pp. 328–334, 2007.
[59]  R. Klein, B. E. K. Klein, S. E. Moss, M. D. Davis, and D. L. DeMets, “Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy,” Journal of the American Medical Association, vol. 260, no. 19, pp. 2864–2871, 1988.
[60]  S. Vitale, M. G. Maguire, R. P. Murphy et al., “Clinically significant macular edema in type I diabetes: incidence and risk factors,” Ophthalmology, vol. 102, no. 8, pp. 1170–1176, 1995.
[61]  R. Klein, B. E. K. Klein, S. E. Moss, and K. J. Cruickshanks, “The wisconsin epidemiologic study of diabetic retinopathy: XVII. The 14- year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes,” Ophthalmology, vol. 105, no. 10, pp. 1801–1815, 1998.
[62]  R. Klein, B. E. K. Klein, and S. E. Moss, “The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema,” Ophthalmology, vol. 91, no. 12, pp. 1464–1474, 1984.
[63]  C. H. Meyer, “Current treatment approaches in diabetic macular edema,” Ophthalmologica, vol. 221, no. 2, pp. 118–131, 2007.
[64]  U. Chakravarthy, R. G. Hayes, A. W. Stitt, E. McAuley, and D. B. Archer, “Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products,” Diabetes, vol. 47, no. 6, pp. 945–952, 1998.
[65]  M. Lu, M. Kuroki, S. Amano et al., “Advanced glycation end products increase retinal vascular endothelial growth factor expression,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1219–1224, 1998.
[66]  T. A. Ciulla, A. Harris, P. Latkany et al., “Ocular perfusion abnormalities in diabetes,” Acta Ophthalmologica Scandinavica, vol. 80, no. 5, pp. 468–477, 2002.
[67]  C. Paget, M. Lecomte, D. Ruggiero, N. Wiernsperger, and M. Lagarde, “Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products,” Free Radical Biology and Medicine, vol. 25, no. 1, pp. 121–129, 1998.
[68]  K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Seminars in Ophthalmology, vol. 14, no. 4, pp. 233–239, 1999.
[69]  L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994.
[70]  J. W. Miller, A. P. Adamis, and L. P. Aiello, “Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy,” Diabetes/Metabolism Reviews, vol. 13, no. 1, pp. 37–50, 1997.
[71]  J. D. Huber, “Diabetes, cognitive function, and the blood-brain barrier,” Current Pharmaceutical Design, vol. 14, no. 16, pp. 1594–1600, 2008.
[72]  O. Tomkins, I. Shelef, I. Kaizerman et al., “Blood-brain barrier disruption in post-traumatic epilepsy,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 7, pp. 774–777, 2008.
[73]  O. Prager, Y. Chassidim, C. Klein, H. Levi, I. Shelef, and A. Friedman, “Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability,” NeuroImage, vol. 49, no. 1, pp. 337–344, 2010.
[74]  N. Cheung, T. Mosley, A. Islam et al., “Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study,” Brain, vol. 133, no. 7, pp. 1987–1993, 2010.
[75]  I. Skoog, A. Wallin, P. Fredman et al., “A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer's disease and vascular dementia,” Neurology, vol. 50, no. 4, pp. 966–971, 1998.
[76]  P. Gudmundsson, I. Skoog, M. Waern et al., “The relationship between cerebrospinal fluid biomarkers and depression in elderly women,” American Journal of Geriatric Psychiatry, vol. 15, no. 10, pp. 832–838, 2007.
[77]  N. Muller and M. Ackenheil, “Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology,” Schizophrenia Research, vol. 14, no. 3, pp. 223–228, 1995.
[78]  M. J. Schwarz, M. Ackenheil, M. Riedel, and N. Müller, “Blood-cerebrospinal fluid barrier impairment as indicator for an immune process in schizophrenia,” Neuroscience Letters, vol. 253, no. 3, pp. 201–203, 1998.
[79]  R. D. Bell and B. V. Zlokovic, “Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 1, pp. 103–113, 2009.
[80]  M. Rothermundt, G. Ponath, T. Glaser, G. Hetzel, and V. Arolt, “S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia,” Neuropsychopharmacology, vol. 29, no. 5, pp. 1004–1011, 2004.
[81]  M. L. Schroeter, H. Abdul-Khaliq, M. Krebs, A. Diefenbacher, and I. E. Blasig, “Serum markers support disease-specific glial pathology in major depression,” Journal of Affective Disorders, vol. 111, no. 2-3, pp. 271–280, 2008.
[82]  M. De Groot, R. Anderson, K. E. Freedland, R. E. Clouse, and P. J. Lustman, “Association of depression and diabetes complications: a meta-analysis,” Psychosomatic Medicine, vol. 63, no. 4, pp. 619–630, 2001.
[83]  R. J. Anderson, K. E. Freedland, R. E. Clouse, and P. J. Lustman, “The prevalence of comorbid depression in adults with diabetes: a meta-analysis,” Diabetes Care, vol. 24, no. 6, pp. 1069–1078, 2001.
[84]  S. H. Saydah, F. L. Brancati, S. H. Golden, J. Fradkin, and M. I. Harris, “Depressive symptoms and the risk of type 2 diabetes mellitus in a US sample,” Diabetes/Metabolism Research and Reviews, vol. 19, no. 3, pp. 202–208, 2003.
[85]  S. Ali, M. A. Stone, J. L. Peters, M. J. Davies, and K. Khunti, “The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis,” Diabetic Medicine, vol. 23, no. 11, pp. 1165–1173, 2006.
[86]  T. Cukierman-Yaffe, H. C. Gerstein, J. D. Williamson et al., “Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular rIsk factors the action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial,” Diabetes Care, vol. 32, no. 2, pp. 221–226, 2009.
[87]  S. D. Yan, X. Chen, J. Fu et al., “RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease,” Nature, vol. 382, no. 6593, pp. 685–691, 1996.
[88]  K. Horie, T. Miyata, T. Yasuda et al., “Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer's disease and aged neurons,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 327–332, 1997.
[89]  H. Vlassara, R. Bucala, and L. Striker, “Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging,” Laboratory Investigation, vol. 70, no. 2, pp. 138–151, 1994.
[90]  E. W. Gregg, K. Yaffe, J. A. Cauley et al., “Is diabetes associated with cognitive impairment and cognitive decline among older women?” Archives of Internal Medicine, vol. 160, no. 2, pp. 174–180, 2000.
[91]  K. Yaffe, T. Blackwell, A. M. Kanaya, N. Davidowitz, E. Barrett-Connor, and K. Krueger, “Diabetes, impaired fasting glucose, and development of cognitive impairment in older women,” Neurology, vol. 63, no. 4, pp. 658–663, 2004.
[92]  K. V. Allen, B. M. Frier, and M. W. J. Strachan, “The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations,” European Journal of Pharmacology, vol. 490, no. 1–3, pp. 169–175, 2004.
[93]  C. E. Lloyd, P. H. Dyert, and A. H. Barnett, “Prevalence of symptoms of depression and anxiety in a diabetes clinic population,” Diabetic Medicine, vol. 17, no. 3, pp. 198–202, 2000.
[94]  R. J. Anderson, M. De Groot, A. B. Grigsby et al., “Anxiety and poor glycemic control: a meta-analytic review of the literature,” International Journal of Psychiatry in Medicine, vol. 32, no. 3, pp. 235–247, 2002.
[95]  A. Gardner and R. G. Boles, “Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders,” Progress in Neuro-Psychopharmacology and Biological Psychiatry. In press.
[96]  Y. Dowlati, N. Herrmann, W. Swardfager et al., “A meta-analysis of cytokines in major depression,” Biological Psychiatry, vol. 67, no. 5, pp. 446–457, 2010.
[97]  M. Maes, R. Yirmyia, J. Noraberg et al., “The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression,” Metabolic Brain Disease, vol. 24, no. 1, pp. 27–53, 2009.
[98]  E. M. Sternberg, “Neural-immune interactions in health and disease,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2641–2647, 1997.
[99]  C. Woiciechowsky, K. Asadullah, D. Nestler et al., “Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury,” Nature Medicine, vol. 4, no. 7, pp. 808–813, 1998.
[100]  N. Vila, J. Castillo, A. Dávalos, and A. Chamorro, “Proinflammatory cytokines and early neurological worsening in ischemic stroke,” Stroke, vol. 31, no. 10, pp. 2325–2329, 2000.
[101]  J. C. O'Connor, D. R. Johnson, and G. G. Freund, “Psychoneuroimmune implications of type 2 diabetes: redux,” Immunology and Allergy Clinics of North America, vol. 29, no. 2, pp. 339–358, 2009.
[102]  C. L. Raison, L. Capuron, and A. H. Miller, “Cytokines sing the blues: inflammation and the pathogenesis of depression,” Trends in Immunology, vol. 27, no. 1, pp. 24–31, 2006.
[103]  A. J. Thomas, S. Davis, C. Morris, E. Jackson, R. Harrison, and J. T. O'Brien, “Increase in interleukin-1β in late-life depression,” American Journal of Psychiatry, vol. 162, no. 1, pp. 175–177, 2005.
[104]  S. Alesci, P. E. Martinez, S. Kelkar et al., “Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2522–2530, 2005.
[105]  C. A. Turner, H. Akil, S. J. Watson, and S. J. Evans, “The fibroblast growth factor system and mood disorders,” Biological Psychiatry, vol. 59, no. 12, pp. 1128–1135, 2006.
[106]  H. D. Schmidt and R. S. Duman, “The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior,” Behavioural Pharmacology, vol. 18, no. 5-6, pp. 391–418, 2007.
[107]  C. Sandi and R. Bisaz, “A model for the involvement of neural cell adhesion molecules in stress-related mood disorders,” Neuroendocrinology, vol. 85, no. 3, pp. 158–176, 2007.
[108]  M. Maes, E. Bosmans, H. Y. Meltzer, S. Scharpe, and E. Suy, “Interleukin-1β: a putative mediator of HPA axis hyperactivity in major depression?” American Journal of Psychiatry, vol. 150, no. 8, pp. 1189–1193, 1993.
[109]  I. Goshen, T. Kreisel, O. Ben-Menachem-Zidon et al., “Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression,” Molecular Psychiatry, vol. 13, no. 7, pp. 717–728, 2008.
[110]  M. Maes, R. Verkerk, S. Bonaccorso, W. Ombelet, E. Bosmans, and S. Scharpé, “Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation,” Life Sciences, vol. 71, no. 16, pp. 1837–1848, 2002.
[111]  M. C. Wichers, G. Kenis, G. H. Koek, G. Robaeys, N. A. Nicolson, and M. Maes, “Interferon-α-induced depressive symptoms are related to changes in the cytokine network but not to cortisol,” Journal of Psychosomatic Research, vol. 62, no. 2, pp. 207–214, 2007.
[112]  R. Dantzer, J. C. O'Connor, G. G. Freund, R. W. Johnson, and K. W. Kelley, “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 46–56, 2008.
[113]  N. Müller and M. J. Schwarz, “The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression,” Molecular Psychiatry, vol. 12, no. 11, pp. 988–1000, 2007.
[114]  E. Fedele and A. C. Foster, “An evaluation of the role of extracellular amino acids in the delayed neurodegeneration induced by quinolinic acid in the rat striatum,” Neuroscience, vol. 52, no. 4, pp. 911–917, 1993.
[115]  V. H. Perry, “The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease,” Brain, Behavior, and Immunity, vol. 18, no. 5, pp. 407–413, 2004.
[116]  S. M. Allan and N. J. Rothwell, “Cytokines and acute neurodegeneration,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 734–744, 2001.
[117]  S. Craft, “The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged,” Archives of Neurology, vol. 66, no. 3, pp. 300–305, 2009.
[118]  J.-S. Roriz, T. M. Sá-Roriz, I. Rosset et al., “(Pre)diabetes, brain aging, and cognition,” Biochimica et Biophysica Acta, vol. 1792, no. 5, pp. 432–443, 2009.
[119]  B. Segura, M. A. Jurado, N. Freixenet, C. Albuin, J. Muniesa, and C. Junqué, “Mental slowness and executive dysfunctions in patients with metabolic syndrome,” Neuroscience Letters, vol. 462, no. 1, pp. 49–53, 2009.
[120]  K. Martinowich, H. Manji, and B. Lu, “New insights into BDNF function in depression and anxiety,” Nature Neuroscience, vol. 10, no. 9, pp. 1089–1093, 2007.
[121]  E. Chemerinski and S. R. Levine, “Neuropsychiatric disorders following vascular brain injury,” Mount Sinai Journal of Medicine, vol. 73, no. 7, pp. 1006–1014, 2006.
[122]  K. M. Dunn and M. T. Nelson, “Potassium channels and neurovascular coupling,” Circulation Journal, vol. 74, no. 4, pp. 608–616, 2010.
[123]  R. F. Haseloff, I. E. Blasig, H. C. Bauer, and H. Bauer, “In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro,” Cellular and Molecular Neurobiology, vol. 25, no. 1, pp. 25–39, 2005.
[124]  A. Friedman, D. Kaufer, and U. Heinemann, “Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy,” Epilepsy Research, vol. 85, no. 2-3, pp. 142–149, 2009.
[125]  L. P. Cacheaux, S. Ivens, Y. David et al., “Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis,” Journal of Neuroscience, vol. 29, no. 28, pp. 8927–8935, 2009.
[126]  S. Ivens, D. Kaufer, L. P. Flores et al., “TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis,” Brain, vol. 130, no. 2, pp. 535–547, 2007.
[127]  M. Zonta, M. C. Angulo, S. Gobbo et al., “Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation,” Nature Neuroscience, vol. 6, no. 1, pp. 43–50, 2003.
[128]  H. R. Parri and V. Crunelli, “The role of in the generation of spontaneous astrocytic oscillations,” Neuroscience, vol. 120, no. 4, pp. 979–992, 2003.
[129]  D. L. Price, J. W. Ludwig, H. Mi, T. L. Schwarz, and M. H. Ellisman, “Distribution of rSlo -activated channels in rat astrocyte perivascular endfeet,” Brain Research, vol. 956, no. 2, pp. 183–193, 2002.
[130]  H. J. Knot, P. A. Zimmermann, and M. T. Nelson, “Extracellular -induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier channels,” Journal of Physiology, vol. 492, no. 2, pp. 419–430, 1996.
[131]  J. A. Filosa, A. D. Bonev, S. V. Straub et al., “Local potassium signaling couples neuronal activity to vasodilation in the brain,” Nature Neuroscience, vol. 9, no. 11, pp. 1397–1403, 2006.
[132]  G. Carmignoto and M. Gómez-Gonzalo, “The contribution of astrocyte signalling to neurovascular coupling,” Brain Research Reviews, vol. 63, no. 1-2, pp. 138–148, 2010.
[133]  G. Perea and A. Araque, “Astrocytes potentiate transmitter release at single hippocampal synapses,” Science, vol. 317, no. 5841, pp. 1083–1086, 2007.
[134]  P. Jourdain, L. H. Bergersen, K. Bhaukaurally et al., “Glutamate exocytosis from astrocytes controls synaptic strength,” Nature Neuroscience, vol. 10, no. 3, pp. 331–339, 2007.
[135]  S. Fleminger, “Long-term psychiatric disorders after traumatic brain injury,” European Journal of Anaesthesiology, vol. 25, supplement 42, pp. 123–130, 2008.
[136]  D. F. Guerreiro, R. Navarro, M. Silva, M. Carvalho, and C. Gois, “Psychosis secondary to traumatic brain injury,” Brain Injury, vol. 23, no. 4, pp. 358–361, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133