全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are Cardiovascular Risk Factors Associated with Verbal Learning and Memory Impairment in Patients with Schizophrenia? A Cross-Sectional Study

DOI: 10.1155/2012/204043

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. The aim of this study is to assess the relationships of cardiovascular risk factors with verbal learning and memory in patients with schizophrenia. Methods and Design. cross-sectional study. Inclusion Criteria. Diagnosis of schizophrenia according to the DSM-IV-TR criteria. Data Collection. Sociodemographic information, clinical characteristics, anthropometric measurements, blood tests, and episodic memory using the California Verbal Learning Test (CVLT). Analysis. A multivariate analysis using multiple linear regressions was performed to determine variables that are potentially associated with verbal learning and memory. Results. One hundred and sixty-eight outpatients participated in our study. An association was found between the metabolic syndrome (MetS) and memory impairment on measures of verbal learning, and short- and long-term memory. Among the different components of MeTS, hypertriglycerides, abdominal obesity, and low HDL cholesterol were the only factors associated with memory impairment. Alcohol dependence or abuse was associated with a higher rate of forgetting. Conclusion. Our findings suggest that MetS and alcohol use may be linked with memory impairment in schizophrenia. These findings provide important insights into the interdependencies of cardiovascular risk factors and cognitive disorders and support novel strategies for treating and preventing cognitive disorders in patients with schizophrenia. 1. Introduction Schizophrenia is characterized by significant abnormalities in multiple neurocognitive processes [1]. Cognitive impairment, especially in verbal learning and memory [2], is considered to be a primary reason for functional disability even after successful treatment and reduction of psychotic symptoms [3]. This area of investigation demands thus attention. Identification of potentially modifiable determinants of verbal learning and memory in schizophrenia is of importance for developing effective interventions that can improve the cognitive performance of patients. Interestingly, evidence suggests that cardiovascular risk factors affect cognitive functions in older patients [4–7]. Moreover, the prevalence of metabolic syndrome (MetS) is higher in individuals with schizophrenia than in the general population, with an overall rate ranging from 30 to 35% [8]. Atypical or second-generation antipsychotics are especially associated with obesity and other components of metabolic syndrome, particularly abnormal glucose and lipid metabolism [9]. Individuals with a psychiatric disorder consume approximately 46% of all

References

[1]  B. E. Kopald, K. M. Mirra, M. F. Egan, D. R. Weinberger, and T. E. Goldberg, “Magnitude of impact of executive functioning and IQ on episodic memory in Schizophrenia,” Biological Psychiatry, vol. 71, pp. 545–551, 2012.
[2]  K. H. Nuechterlein, D. M. Barch, J. M. Gold, T. E. Goldberg, M. F. Green, and R. K. Heaton, “Identification of separable cognitive factors in schizophrenia,” Schizophrenia Research, vol. 72, no. 1, pp. 29–39, 2004.
[3]  H. A. Nasrallah, “Linkage of cognitive impairments with metabolic disorders in schizophrenia,” American Journal of Psychiatry, vol. 167, no. 10, pp. 1155–1157, 2010.
[4]  K. Yaffe, A. Kanaya, K. Lindquist et al., “The metabolic syndrome, inflammation, and risk of cognitive decline,” The Journal of the American Medical Association, vol. 292, no. 18, pp. 2237–2242, 2004.
[5]  M. G. Dik, C. Jonker, H. C. Comijs et al., “Contribution of metabolic syndrome components to cognition in older individuals,” Diabetes Care, vol. 30, no. 10, pp. 2655–2660, 2007.
[6]  C. Y. Liu, H. D. Zhou, Z. Q. Xu, W. W. Zhang, X. Y. Li, and J. Zhao, “Metabolic syndrome and cognitive impairment amongst elderly people in Chinese population: a cross-sectional study,” European Journal of Neurology, vol. 16, no. 9, pp. 1022–1027, 2009.
[7]  E. van den Berg, R. P. Kloppenborg, R. P. C. Kessels, L. J. Kappelle, and G. J. Biessels, “Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition,” Biochimica et Biophysica Acta, vol. 1792, no. 5, pp. 470–481, 2009.
[8]  A. J. Mitchell, D. Vancampfort, K. Sweers, R. van Winkel, W. Yu, and M. De Hert, “Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—a systematic review and meta-analysis,” Schizophrenia Bulletin. In press.
[9]  P. Pramyothin and L. Khaodhiar, “Metabolic syndrome with the atypical antipsychotics,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 460–466, 2010.
[10]  B. F. Grant, D. S. Hasin, S. P. Chou, F. S. Stinson, and D. A. Dawson, “Nicotine dependence and psychiatric disorders in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions,” Archives of General Psychiatry, vol. 61, no. 11, pp. 1107–1115, 2004.
[11]  J. Koskinen, J. L?h?nen, H. Koponen, M. Isohanni, and J. Miettunen, “Prevalence of alcohol use disorders in schizophrenia—a systematic review and meta-analysis,” Acta Psychiatrica Scandinavica, vol. 120, no. 2, pp. 85–96, 2009.
[12]  J. M. Meyer, H. A. Nasrallah, J. P. McEvoy et al., “The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial: clinical comparison of subgroups with and without the metabolic syndrome,” Schizophrenia Research, vol. 80, no. 1, pp. 9–18, 2005.
[13]  J. I. Friedman, S. Wallenstein, E. Moshier et al., “The effects of hypertension and body mass index on cognition in schizophrenia,” American Journal of Psychiatry, vol. 167, no. 10, pp. 1232–1239, 2010.
[14]  APA: DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 2000.
[15]  S. R. Kay, L. A. Opler, and A. Fiszbein, “Significance of positive and negative syndromes in chronic schizophrenia,” British Journal of Psychiatry, vol. 149, pp. 439–448, 1986.
[16]  T. F. Heatherton, L. T. Kozlowski, R. C. Frecker, and K. O. Fagerstrom, “The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire,” British Journal of Addiction, vol. 86, no. 9, pp. 1119–1127, 1991.
[17]  D. C. Delis, J. H. Kramer, E. Kaplan, and B. A. Ober, California Verbal Learning Test: Research Edition-Adult Version, The Psychological Corporation, New York, NY, USA, 1987.
[18]  S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005.
[19]  A. Cheng, J. B. Braunstein, C. Dennison, C. Nass, and R. S. Blumenthal, “Reducing global risk for cardiovascular disease: using lifestyle changes and pharmacotherapy,” Clinical Cardiology, vol. 25, no. 5, pp. 205–212, 2002.
[20]  G. A. Bray, “Obesity is a chronic, relapsing neurochemical disease,” International Journal of Obesity, vol. 28, no. 1, pp. 34–38, 2004.
[21]  K. F. Holden, K. Lindquist, F. A. Tylavsky, C. Rosano, T. B. Harris, and K. Yaffe, “Serum leptin level and cognition in the elderly: findings from the Health ABC Study,” Neurobiology of Aging, vol. 30, no. 9, pp. 1483–1489, 2009.
[22]  X. L. Li, S. Aou, Y. Oomura, N. Hori, K. Fukunaga, and T. Hori, “Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents,” Neuroscience, vol. 113, no. 3, pp. 607–615, 2002.
[23]  Y. Oomura, N. Hori, T. Shiraishi et al., “Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats,” Peptides, vol. 27, no. 11, pp. 2738–2749, 2006.
[24]  C. Reitz, M. X. Tang, J. Manly, R. Mayeux, and J. A. Luchsinger, “Hypertension and the risk of mild cognitive impairment,” Archives of Neurology, vol. 64, no. 12, pp. 1734–1740, 2007.
[25]  V. Manning, S. Betteridge, S. Wanigaratne, D. Best, J. Strang, and M. Gossop, “Cognitive impairment in dual diagnosis inpatients with schizophrenia and alcohol use disorder,” Schizophrenia Research, vol. 114, no. 1–3, pp. 98–104, 2009.
[26]  C. R. Bowie, M. R. Serper, S. Riggio, and P. D. Harvey, “Neurocognition, symptomatology, and functional skills in older alcohol-abusing schizophrenia patients,” Schizophrenia Bulletin, vol. 31, no. 1, pp. 175–182, 2005.
[27]  A. Olincy, J. G. Harris, L. L. Johnson et al., “Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia,” Archives of General Psychiatry, vol. 63, no. 6, pp. 630–638, 2006.
[28]  M. S. D'Souza and A. Markou, “Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits,” Neuropharmacology, vol. 62, pp. 1564–1573, 2012.
[29]  R. A. Whitmer, S. Sidney, J. Selby, S. C. Johnston, and K. Yaffe, “Midlife cardiovascular risk factors and risk of dementia in late life,” Neurology, vol. 64, no. 2, pp. 277–281, 2005.
[30]  M. J. Smith, L. Wang, W. Cronenwett et al., “Alcohol use disorders contribute to hippocampal and subcortical shape differences in schizophrenia,” Schizophrenia Research, vol. 131, pp. 174–183, 2011.
[31]  R. E. Drake, S. M. Essock, A. Shaner et al., “Implementing dual diagnosis services for clients with severe mental illness,” Psychiatric Services, vol. 52, no. 4, pp. 469–476, 2001.
[32]  S. M. Essock, R. E. Drake, and B. J. Burns, “A research network to evaluate assertive community treatment: introduction,” The American Journal of Orthopsychiatry, vol. 68, no. 2, pp. 176–178, 1998.
[33]  M. R. Picciotto and M. Zoli, “Nicotinic receptors in aging and dementia,” Journal of Neurobiology, vol. 53, no. 4, pp. 641–655, 2002.
[34]  R. Jurado-Barba, I. Morales-Mu?oz, B. A. del Manzano et al., “Relationship between measures of inhibitory processes in patients with schizophrenia: role of substance abuse disorders,” Psychiatry Research, vol. 190, pp. 187–192, 2011.
[35]  E. L. M. Ochoa and J. Lasalde-Dominicci, “Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking,” Cellular and Molecular Neurobiology, vol. 27, no. 5, pp. 609–639, 2007.
[36]  H. Adachi, H. Yanai, and Y. Hirowatari, “The underlying mechanisms for olanzapine-induced hypertriglyceridemia,” Journal of Clinical Medicine Research, vol. 4, pp. 206–208, 2012.
[37]  C. Garcia-Rizo, E. Fernandez-Egea, C. Oliveira, A. Justicia, M. Bernardo, and B. Kirkpatrick, “Inflammatory markers in antipsychotic-na?ve patients with nonaffective psychosis and deficit vs. nondeficit features,” Psychiatry Research, vol. 198, no. 2, pp. 212–215, 2012.
[38]  H. A. Nasrallah and J. W. Newcomer, “Atypical antipsychotics and metabolic dysregulation: evaluating the risk/benefit equation and improving the standard of care,” Journal of Clinical Psychopharmacology, vol. 24, no. 5, supplement 1, pp. S7–S14, 2004.
[39]  H. Y. Meltzer and S. R. McGurk, “The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia,” Schizophrenia Bulletin, vol. 25, no. 2, pp. 233–255, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133