全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Variations in mid-ocean ridge CO2 emissions driven by glacial cycles

DOI: 10.1016/j.epsl.2015.06.031

Full-Text   Cite this paper   Add to My Lib

Abstract:

The geological record shows links between glacial cycles and volcanic productivity, both subaerially and at mid-ocean ridges. Sea-level-driven pressure changes could also affect chemical properties of mid-ocean ridge volcanism. We consider how changing sea-level could alter the CO2 emissions rate from mid-ocean ridges, on both the segment and global scale. We develop a simplified transport model for a highly incompatible element through a homogenous mantle; variations in the melt concentration the emission rate of the element are created by changes in the depth of first silicate melting. The model predicts an average global mid-ocean ridge CO2 emissions-rate of 53 Mt/yr, in line with other estimates. We show that falling sea level would cause an increase in ridge CO2 emissions with a lag of about 100 kyrs after the causative sea level change. The lag and amplitude of the response are sensitive to mantle permeability and plate spreading rate. For a reconstructed sea-level time series of the past million years, we predict variations of up to 12% (7 Mt/yr) in global mid-ocean ridge CO2 emissions. The magnitude and timing of the predicted variations in CO2 emissions suggests a potential role for ridge carbon emissions in glacial cycles.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133