全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomarkers as Key Contributors in Treating Malignant Melanoma Metastases

DOI: 10.1155/2012/156068

Full-Text   Cite this paper   Add to My Lib

Abstract:

Melanoma is a human neurocristopathy associated with developmental defects in the neural crest-derived epidermal melanocytes. At the present time, at least three hypotheses were identified that may explain melanoma aetiology, as follows: (1) a model of linear progression from differentiated melanocytes to metastatic cancer cells (2) a model involving the appearance of melanoma stem-like cells, and (3) an epigenetic progenitor model of cancer. Treating metastatic melanoma is one of the most serious challenges in the 21st century. This is justified because of a subpopulation of cells presenting a remarkable molecular heterogeneity, which is able to explain the drug resistance and the growing mortality rates worldwide. Fortunately, there are now evidences sustaining the importance of genetic, epigenetic, and metabolomic alterations as biomarkers for classification, staging, and better management of melanoma patients. To illustrate some fascinating insights in this field, the genes BRAFV600E and CTLA4 have been recognized as bona fide targets to benefit melanoma patients. Our research attempts to carefully evaluate data from the literature in order to highlight the link between a molecular disease model and the key contribution of biomarkers in treating malignant melanoma metastases. 1. Introduction Historically, the first report of malignant tumor formations in the skin from anatomic sites where nevi had previously existed was proposed by Virchow [1]. Melanotic nevi and cutaneous melanoma are defined as human neurocristopathies associated with developmental defects in the neural crest-derived epidermal melanocytes. One consequence of changes in skin melanocyte development is its malignant transformation to cutaneous melanoma [2, 3]. In the sixties, Clark and coauthors described three different clinical types of primary human skin melanomas based on histological growth patterns: superficial spreading melanoma (SSM), nodular melanoma (NM), and lentigo maligna melanoma (LMM). Any melanoma, except NM, was showed to present a biphasic growth pattern: an initial and long period of time characterized by superficial growth followed by rapid deeper invasion. Curiously, NM subtype does not appear to have a superficial growth component, and it was characterized by uniform invasiveness. Moreover, they observed five anatomic levels of invasion (Clark's levels I–V), based on extracellular matrix architecture, as follows: level I (tumor cells were above the basement membrane—in situ melanoma), level II (tumor cells invading the papillary dermis), level III (tumor cells

References

[1]  G. E. De Schweinitz and E. A. Shumway, “Concerning melanoma of the choroid with report of one case of this character and of another exhibiting a pigmented sarcoma of the choroid early in its development,” Transactions of the American Ophthalmological Society, vol. 10, part 3, pp. 439–451, 1905.
[2]  V. Gray-Schopfer, C. Wellbrock, and R. Marais, “Melanoma biology and new targeted therapy,” Nature, vol. 445, no. 7130, pp. 851–857, 2007.
[3]  L. Hou and W. J. Pavan, “Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf?” Cell Research, vol. 18, no. 12, pp. 1163–1176, 2008.
[4]  W. H. Clark Jr., L. From, E. A. Bernardino, and M. C. Mihm, “The histogenesis and biologic behavior of primary human malignant melanomas of the skin,” Cancer Research, vol. 29, no. 3, pp. 705–727, 1969.
[5]  R. J. Reed, “Acral lentiginous melanoma,” in New Concepts in Surgical Pathology of the Skin, pp. 89–90, Wiley, New York, NY, USA, 1979.
[6]  W. H. Clark Jr., D. E. Elder, and D. Guerry, “A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma,” Human Pathology, vol. 15, no. 12, pp. 1147–1165, 1984.
[7]  C. Gaggioli and E. Sahai, “Melanoma invasion—current knowledge and future directions,” Pigment Cell Research, vol. 20, no. 3, pp. 161–172, 2007.
[8]  S. E. Zabierowski and M. Herlyn, “Melanoma stem cells: the dark seed of melanoma,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2890–2894, 2008.
[9]  A. P. Feinberg, R. Ohlsson, and S. Henikoff, “The epigenetic progenitor origin of human cancer,” Nature Reviews Genetics, vol. 7, no. 1, pp. 21–33, 2006.
[10]  K. A. Parker, S. Glaysher, M. Polak et al., “The molecular basis of the chemosensitivity of metastatic cutaneous melanoma to chemotherapy,” Journal of Clinical Pathology, vol. 63, no. 11, pp. 1012–1020, 2010.
[11]  M. S. Soengas and S. W. Lowe, “Apoptosis and melanoma chemoresistance,” Oncogene, vol. 22, no. 20, pp. 3138–3151, 2003.
[12]  C. M. Balch, J. E. Gershenwald, S. J. Soong et al., “Final version of 2009 AJCC melanoma staging and classification,” Journal of Clinical Oncology, vol. 27, no. 36, pp. 6199–6206, 2009.
[13]  E. D. Pleasance, R. K. Cheetham, P. J. Stephens et al., “A comprehensive catalogue of somatic mutations from a human cancer genome,” Nature, vol. 463, no. 7278, pp. 191–196, 2010.
[14]  S. Sharma, T. K. Kelly, and P. A. Jones, “Epigenetics in cancer,” Carcinogenesis, vol. 31, no. 1, pp. 27–36, 2009.
[15]  L. Sigalotti, A. Covre, E. Fratta et al., “Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies,” Journal of Translational Medicine, vol. 8, article 56, 2010.
[16]  F. Molognoni, A. T. Cruz, F. M. Meliso et al., “Epigenetic reprogramming as a key contributor to melanocyte malignant transformation,” Epigenetics, vol. 6, no. 4, pp. 451–465, 2011.
[17]  R. P. Gallagher, A. C. MacArthur, T. K. Lee et al., “Plasma levels of polychlorinated biphenyls and risk of cutaneous malignant melanoma: a preliminary study,” International Journal of Cancer, vol. 128, no. 8, pp. 1872–1880, 2011.
[18]  V. J. McGovern, A. J. Cochran, and E. P. Van der Esch, “The classification of malignant melanoma, its histological reporting and registration: a revision of the 1972 Sydney classification,” Pathology, vol. 18, no. 1, pp. 12–21, 1986.
[19]  C. M. Balch, “Cutaneous melanoma: prognosis and treatment results worldwide,” Seminars in Surgical Oncology, vol. 8, no. 6, pp. 400–414, 1992.
[20]  J. A. Curtin, J. Fridlyand, T. Kageshita et al., “Distinct sets of genetic alterations in melanoma,” New England Journal of Medicine, vol. 353, no. 20, pp. 2135–2147, 2005.
[21]  A. Roesch, M. Fukunaga-Kalabis, E. C. Schmidt et al., “A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth,” Cell, vol. 141, no. 4, pp. 583–594, 2010.
[22]  S. R. Alonso, P. Ortiz, M. Pollán et al., “Progression in cutaneous malignant melanoma is associated with distinct expression profiles: a tissue microarray-based study,” American Journal of Pathology, vol. 164, no. 1, pp. 193–203, 2004.
[23]  B. ?estáková, L. Ondru?ová, and J. Vachtenheim, “Cell cycle inhibitor p21/WAF1/CIP1 as a cofactor of MITF expression in melanoma cells,” Pigment Cell and Melanoma Research, vol. 23, no. 2, pp. 238–251, 2010.
[24]  K. T. Flaherty, I. Puzanov, K. B. Kim et al., “Inhibition of mutated, activated BRAF in metastatic melanoma,” New England Journal of Medicine, vol. 363, no. 9, pp. 809–819, 2010.
[25]  A. Viros, J. Fridlyand, J. Bauer et al., “Improving melanoma classification by integrating genetic and morphologic features,” PLoS Medicine, vol. 5, no. 6, article e120, 2008.
[26]  S. M. C. Broekaert, R. Roy, I. Okamoto et al., “Genetic and morphologic features for melanoma classification,” Pigment Cell and Melanoma Research, vol. 23, no. 6, pp. 763–770, 2010.
[27]  T. Nguyen, C. Kuo, M. B. Nicholl et al., “Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma,” Epigenetics, vol. 6, no. 3, pp. 388–394, 2011.
[28]  A. Tanemura, A. M. Terando, M. S. Sim et al., “CpG Island methylator phenotype predicts progression of malignant melanoma,” Clinical Cancer Research, vol. 15, no. 5, pp. 1801–1807, 2009.
[29]  T. Abaffy, R. Duncan, D. D. Riemer et al., “Differential volatile signatures from skin, naevi and melanoma: a novel approach to detect a pathological process,” PLoS ONE, vol. 5, no. 11, Article ID e13813, 2010.
[30]  A. C. E. Campos, F. Molognoni, F. H. M. Melo et al., “Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation,” Neoplasia, vol. 9, no. 12, pp. 1111–1121, 2007.
[31]  T. Schatton, U. Schütte, N. Y. Frank et al., “Modulation of T-cell activation by malignant melanoma initiating cells,” Cancer Research, vol. 70, no. 2, pp. 697–708, 2010.
[32]  T. Shimbo, A. Tanemura, T. Yamazaki, K. Tamai, I. Katayama, and Y. Kaneda, “Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma,” PloS one, vol. 5, no. 5, Article ID e10566, 2010.
[33]  K. Boisvert-Adamo and A. E. Aplin, “Mutant B-RAF mediates resistance to anoikis via Bad and Bim,” Oncogene, vol. 27, no. 23, pp. 3301–3312, 2008.
[34]  S. V. Saladi, B. Keenen, H. G. Marathe, H. Qi, K. V. Chin, and I. L. de la Serna, “Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness,” Molecular Cancer, vol. 9, article 280, 2010.
[35]  A. Fusi, U. Reichelt, A. Busse et al., “Expression of the stem cell markers nestin and CD133 on circulating melanoma cells,” Journal of Investigative Dermatology, vol. 131, no. 2, pp. 487–494, 2011.
[36]  M. S. Khodadoust, M. Verhaegen, F. Kappes et al., “Melanoma proliferation and chemoresistance controlled by the DEK oncogene,” Cancer Research, vol. 69, no. 16, pp. 6405–6413, 2009.
[37]  R. Buscà, E. Berra, C. Gaggioli et al., “Hypoxia-inducible factor 1α is a new target of microphthalmia- associated transcription factor (MITF) in melanoma cells,” Journal of Cell Biology, vol. 170, no. 1, pp. 49–59, 2005.
[38]  B. Garmy-Susini, C. J. Avraamides, M. C. Schmid et al., “Integrin α4β1 signaling is required for lymphangiogenesis and tumor metastasis,” Cancer Research, vol. 70, no. 8, pp. 3042–3051, 2010.
[39]  K. Boisvert-Adamo, W. Longmate, E. V. Abel, and A. E. Aplin, “Mcl-1 is required for melanoma cell resistance to anoikis,” Molecular Cancer Research, vol. 7, no. 4, pp. 549–556, 2009.
[40]  I. Elson-Schwab, A. Lorentzen, and C. J. Marshall, “MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion,” PLoS ONE, vol. 5, no. 10, Article ID e13176, 2010.
[41]  Y. Wang, S. Radfar, S. Liu, A. I. Riker, and H. T. Khong, “Mitf-Mdel, a novel melanocyte/melanoma-specific isoform of microphthalmia-associated transcription factor-M, as a candidate biomarker for melanoma,” BMC Medicine, vol. 8, article 14, 2010.
[42]  M. Chekenya, C. Krakstad, A. Svendsen et al., “The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling,” Oncogene, vol. 27, no. 39, pp. 5182–5194, 2008.
[43]  D. Massi, M. Landriscina, A. Piscazzi et al., “S100A13 is a new angiogenic marker in human melanoma,” Modern Pathology, vol. 23, no. 6, pp. 804–813, 2010.
[44]  F. Lozupone, M. Perdicchio, D. Brambilla et al., “The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells,” EMBO Reports, vol. 10, no. 12, pp. 1348–1354, 2009.
[45]  O. Berthier-Vergnes, M. E. Kharbili, A. de La Fouchardière et al., “Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion,” British Journal of Cancer, vol. 104, no. 1, pp. 155–165, 2011.
[46]  M. Li, B. Zhang, B. Sun et al., “A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 109, 2010.
[47]  S. K. Dissanayake, M. Wade, C. E. Johnson et al., “The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition,” Journal of Biological Chemistry, vol. 282, no. 23, pp. 17259–17271, 2007.
[48]  C. Longo, G. Gambara, V. Espina et al., “A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum,” Experimental Dermatology, vol. 20, no. 1, pp. 29–34, 2011.
[49]  T. C. Camilli, M. Xu, M. P. O'Connell et al., “Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility,” Pigment Cell and Melanoma Research, vol. 24, no. 1, pp. 175–186, 2011.
[50]  J. Mazar, K. De Young, D. Khaitan et al., “The regulation of miRNA-211 expression and its role in melanoma cell invasiveness,” PLoS ONE, vol. 5, no. 11, Article ID e13779, 2010.
[51]  C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic review of medical treatment in melanoma: current status and future prospects,” Oncologist, vol. 16, no. 1, pp. 5–24, 2011.
[52]  S. Bhatia, S. S. Tykodi, and J. A. Thompson, “Treatment of metastatic melanoma: an overview,” Oncology, vol. 23, no. 6, pp. 488–496, 2009.
[53]  M. B. Lens and T. G. Eisen, “Systemic chemotherapy in the treatment of malignant melanoma,” Expert Opinion on Pharmacotherapy, vol. 4, no. 12, pp. 2205–2211, 2003.
[54]  D. Schadendorf, S. M. Algarra, L. Bastholt et al., “Immunotherapy of distant metastatic disease,” Annals of Oncology, vol. 20, supplement 6, pp. 41–50, 2009.
[55]  M. B. Atkins, M. T. Lotze, J. P. Dutcher et al., “High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993,” Journal of Clinical Oncology, vol. 17, no. 7, pp. 2105–2116, 1999.
[56]  O. Eton, S. S. Legha, A. Y. Bedikian et al., “Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial,” Journal of Clinical Oncology, vol. 20, no. 8, pp. 2045–2052, 2002.
[57]  N. J. Ives, R. L. Stowe, P. Lorigan, and K. Wheatley, “Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients,” Journal of Clinical Oncology, vol. 25, no. 34, pp. 5426–5434, 2007.
[58]  M. B. Atkins, J. Hsu, S. Lee et al., “Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon α-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group,” Journal of Clinical Oncology, vol. 26, no. 35, pp. 5748–5754, 2008.
[59]  D. R. Minor, D. Moore, C. Kim et al., “Prognostic factors in metastatic melanoma patients treated with biochemotherapy and maintenance immunotherapy,” Oncologist, vol. 14, no. 10, pp. 995–1002, 2009.
[60]  S. J. O'Day, M. B. Atkins, P. Boasberg et al., “Phase II multicenter trial of maintenance biotherapy after induction concurrent biochemotherapy for patients with metastatic melanoma,” Journal of Clinical Oncology, vol. 27, no. 36, pp. 6207–6212, 2009.
[61]  K. T. Flaherty, “Chemotherapy and targeted therapy combinations in advanced melanoma,” Clinical Cancer Research, vol. 12, no. 7, part 2, pp. 2366s–2370s, 2006.
[62]  F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010.
[63]  A. Ribas, A. Hauschild, R. Kefford, et al., “Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma,” Journal of Clinical Oncology, vol. 26, 2008, ASCO Meeting Abstracts: Abstr LBA9011.
[64]  J. M. Kirkwood, P. Lorigan, P. Hersey et al., “Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma,” Clinical Cancer Research, vol. 16, no. 3, pp. 1042–1048, 2010.
[65]  M. Sznol, “Promising immunotherapeutic approaches to the treatment of metastatic melanoma: modulation of the immune response,” Community Oncology, vol. 5, no. 3 SUPPL., pp. 14–22, 2008.
[66]  S. A. Rosenberg, N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley, “Adoptive cell transfer: a clinical path to effective cancer immunotherapy,” Nature Reviews Cancer, vol. 8, no. 4, pp. 299–308, 2008.
[67]  S. A. Rosenberg and M. E. Dudley, “Adoptive cell therapy for the treatment of patients with metastatic melanoma,” Current Opinion in Immunology, vol. 21, no. 2, pp. 233–240, 2009.
[68]  N. N. Hunder, H. Wallen, J. Cao et al., “Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1,” New England Journal of Medicine, vol. 358, no. 25, pp. 2698–2703, 2008.
[69]  A. M. M. Eggermont, “Advances in systemic treatment of melanoma,” Annals of Oncology, vol. 21, no. 7, pp. 339–344, 2010.
[70]  D. L. Morton, N. Mozzillo, J. F. Thompson, et al., “An international, randomized, phase III trial of bacillus Calmette-Guerin (BCG) plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites,” Journal of Clinical Oncology, vol. 25, 2007, ASCO Meeting Abstracts: Abstr 8508.
[71]  M. B. Faries, E. C. Hsueh, X. Ye, M. Hoban, and D. L. Morton, “Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine,” Clinical Cancer Research, vol. 15, no. 22, pp. 7029–7035, 2009.
[72]  K. T. Flaherty, “Combination therapy: key data and ongoing studies combining targeted and cytotoxic agents,” Community Oncology, vol. 5, no. 3 SUPPL., pp. 23–30, 2008.
[73]  S. J. Vidwans, K. T. Flaherty, D. E. Fisher, J. M. Tenenbaum, M. D. Travers, and J. Shrager, “A melanoma molecular disease model,” PLoS ONE, vol. 6, no. 3, Article ID e18257, 2011.
[74]  R. O. Dillman, S. R. Selvan, P. M. Schiltz et al., “Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 3, pp. 311–319, 2009.
[75]  W. H. Kruit, S. Suciu, B. Dreno, et al., “Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: a randomized open-label phase II study of the EORTC Melanoma Group (16032–18031),” Journal of Clinical Oncology, vol. 26, 2008, ASCO Meeting Abstracts: Abstr 9065.
[76]  J. Louahed, O. Gruselle, S. Gaulis, et al., “Expression of defined genes identified by pretreatment tumor profiling: association with clinical responses to the GSK MAGE-A3 immunotherapeutic in metastatic melanoma patients (EORTC 16032–18031),” Journal of Clinical Oncology, vol. 26, 2008, ASCO Meeting Abstracts: Abstr 9045.
[77]  N. N. Senzer, H. L. Kaufman, T. Amatruda, et al., “Phase II clinical trial with a second generation, GM-CSF encoding, oncolytic herpesvirus in unresectable metastatic melanoma,” Journal of Clinical Oncology, vol. 26, 2008, ASCO Meeting Abstracts: Abstr 9008.
[78]  D. J. Schwartzentruber, D. Lawson, J. Richards, et al., “A phase III multi-institutional randomized study of immunization with the gp100: 209–217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma,” Journal of Clinical Oncology, vol. 27, 2009, ASCO Meeting Abstracts: Abstr 9011.
[79]  P. A. Ott, A. Hamilton, C. Min et al., “A phase II trial of sorafenib in metastatic melanoma with tissue correlates,” PLoS ONE, vol. 5, no. 12, Article ID e15588, 2010.
[80]  P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011.
[81]  D. A. Murphy, S. Makonnen, W. Lassoued, M. D. Feldman, C. Carter, and W. M. F. Lee, “Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006),” American Journal of Pathology, vol. 169, no. 5, pp. 1875–1885, 2006.
[82]  R. K. Amaravadi, L. M. Schuchter, D. F. McDermott et al., “Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases,” Clinical Cancer Research, vol. 15, no. 24, pp. 7711–7718, 2009.
[83]  S. M. Oba-Shinjo, M. Correa, T. I. Ricca et al., “Melanocyte transformation associated with substrate adhesion impediment,” Neoplasia, vol. 8, no. 3, pp. 231–241, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413