全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Three-Dimensional Simulation of Biological Ion Channels Under Mechanical, Thermal and Fluid Forces

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we address the three-dimensional modeling and simulation of biological ion channels using a continuum-based approach. Our multi-physics formulation self-consistently combines, to the best of our knowledge for the first time, ion electrodiffusion, channel fluid motion, thermal self-heating and mechanical deformation. The resulting system of nonlinearly coupled partial differential equations in conservation form is discretized using the Galerkin Finite Element Method. The validation of the proposed computational model is carried out with the simulation of a cylindrical voltage operated ion nanochannel with K+ and Na+ ions. We first investigate the coupling between electrochemical and fluid-dynamical effects. Then, we enrich the modeling picture by investigating the influence of a thermal gradient. Finally, we add a mechanical stress responsible for channel deformation and investigate its effect on the functional response of the channel. Results show that fluid and thermal fields have no influence in absence of mechanical deformation whereas ion distributions and channel functional response are significantly modified if mechanical stress is included in the model. These predictions agree with biophysical conjectures on the importance of protein conformation in the modulation of channel electrochemical properties.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133