全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

A higher-order gradient flow scheme for a singular one-dimensional diffusion equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nonlinear diffusion equation, interpreted as a Wasserstein gradient flow, is numerically solved in one space dimension using a higher-order minimizing movement scheme based on the BDF (backward differentiation formula) discretization. In each time step, the approximation is obtained as the solution of a constrained quadratic minimization problem on a finite-dimensional space consisting of piecewise quadratic basis functions. The numerical scheme conserves the mass and dissipates the $G$-norm of the two-step BDF time approximation. Numerically, also the discrete entropy and variance are decaying. The decay turns out to be exponential in all cases. The corresponding decay rates are computed numerically for various grid numbers.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133