全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts

DOI: 10.1155/2012/157125

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antioxidant potential of various extracts of Cassia fistula was determined by the DPPH, FRAP, Fe3+ reducing power, and hydrogen peroxide scavenging assay. Methanolic extracts of Cassia fistula showed the highest amount of phenolic and flavonoid content and reducing capacity, whereas hexane extracts exhibited the lowest level of reducing capacity. The order of antioxidant activity in Cassia fistula extracts displayed from higher to lower level as methanolic extracts of pulp, methanolic extracts of seed, hexane extracts of pulp, and hexane extracts of seed. The antioxidant potential of Cassia fistula extracts significantly correlated ( ) with the phenolic content of the methanolic extracts. Ascorbic acid taken as control showed highest antioxidant power in the present study. 1. Introduction Cassia fistula Linn. (Caesalpiniaceae) has great therapeutic implication in Indian system of medicine and exerts an antipyretic, analgesic, antiinflammatory, and hypoglycemic effects [1, 2]. Over the past few years, there has been an exponential growth in study of pharmacological properties of this plant [3–5]. Antioxidant components are microconstituents that inhibit lipid oxidation by inhibiting the initiation or propagation of oxidizing chain reactions, and are also involved in scavenging of free radicals. Clinical approaches of antioxidants increased multifold during the recent time for the management and therapeutic implication of neurodegenerative disorders, aging, and chronic degenerative diseases. In view of the above, we designed the study to evaluate the antioxidant potential and phenolic content in Cassia fistula. 2. Materials and Methods 2.1. Reagent and Chemicals All the chemicals and solvents were of analytical grade and obtained from Merck and HiMedia, Mumbai, India. 2.2. Preparation of Cassia fistula Extracts The fresh ripe fruits of Cassia fistula were collected in June from the campus of Delhi College of Pharmaceutical Science and Research (DIPSAR), New Delhi, India, and properly authenticated. A voucher of specimen (PM 21) was stored in the laboratory for further reference. The fruit pulp and seed were separated and grounded to coarse powder. It was extracted with the hexane for 72?hrs and the same materials were reextracted with methanol for 72?hrs in soxhlet apparatus. The extract was filtered and dried in rotavapour. Hence, we obtained hexane extract of seed (HES), hexane extract of pulp (HEP), methanolic extract of seed (MES), and methanolic extract of pulp (MEP). 2.3. Estimation of Total Phenolic Content The total phenol content was estimated in

References

[1]  D. G. Patel, S. S. Karbhari, O. D. Gulati, and S. D. Gokhale, “Antipyretic and analgesic activities of Aconitum spicatum and Cassia fistula,” Pharmaceutical Biology, vol. 157, no. 1, pp. 22–27, 1965.
[2]  M. M. A. Rizvi, M. Irshad, G. El Hassadi, and S. B. Younis, “Bioefficacies of Cassia fistula: an Indian labrum,” African Journal of Pharmacy and Pharmacology, vol. 3, no. 6, pp. 287–292, 2009.
[3]  T. Bhakta, P. K. Mukherjee, K. Mukherjee, M. Pal, and B. P. Saha, “Studies on in vivo wound healing activity of Cassia fistula linn. Leaves (Leguminosae) in rats,” Natural Product Sciences, vol. 4, no. 2, pp. 84–87, 1998.
[4]  M. Irshad, M. Singh, and M. M. A. Rizvi, “Assessment of anthelmintic activity of Cassia fistula L,” Middle East Journal of Science and Research, vol. 5, pp. 346–349, 2010.
[5]  M. Irshad, S. Shreaz, N. Manzoor, L. A. Khan, and M. M. A. Rizvi, “Anticandidal activity of Cassia fistula and its effect on ergosterol biosynthesis,” Pharmaceutical Biology, vol. 49, no. 7, pp. 727–733, 2011.
[6]  V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998.
[7]  J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chemistry, vol. 64, no. 4, pp. 555–559, 1999.
[8]  G. Miliauskas, P. R. Venskutonis, and T. A. Van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004.
[9]  W. Boonchum, Y. Peerapornpisal, D. Kanjanapothi et al., “Antioxidant activity of some seaweed from the Gulf of Thailand,” International Journal of Agriculture and Biology, vol. 13, no. 1, pp. 95–99, 2011.
[10]  S. Dudonné, X. Vitrac, P. Coutiére, M. Woillez, and J. M. Mérillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1768–1774, 2009.
[11]  S. Luqman, S. Srivastava, R. Kumar, A. K. Maurya, and D. Chanda, “Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 519084, 2012.
[12]  L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002.
[13]  G. P. Ganu, S. S. Jadhav, and A. D. Deshpande, “Antioxidant and antihyperglycemic potential of methanolic extract of bark of mimusops elengi l. In mice,” International Journal of Phytomedicine, vol. 2, no. 2, pp. 116–123, 2010.
[14]  M. Oyaizu, “Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucose amine,” Japanese Journal of Nutrition, vol. 44, pp. 307–315, 1986.
[15]  K. Zhou and L. Yu, “Effects of extraction solvent on wheat bran antioxidant activity estimation,” LWT—Food Science and Technology, vol. 37, no. 7, pp. 717–721, 2004.
[16]  T. Sun and C. T. Ho, “Antioxidant activities of buckwheat extracts,” Food Chemistry, vol. 90, no. 4, pp. 743–749, 2005.
[17]  H. Mohamed, M. Ons, E. T. Yosra, S. Rayda, G. Neji, and N. Moncef, “Chemical composition and antioxidant and radical-scavenging activities of Periploca laevigata root bark extracts,” Journal of the Science of Food and Agriculture, vol. 89, no. 5, pp. 897–905, 2009.
[18]  O. I. Aruoma, “Free radicals, oxidative stress, and antioxidants in human health and disease,” Journal of the American Oil Chemists' Society, vol. 75, no. 2, pp. 199–212, 1998.
[19]  J. Burgess and R. H. Prince, “1132. Kinetics of reactions of ligand-substituted tris-(2,2′- bipyridyl)iron(II) complexes,” Journal of the Chemical Society, pp. 6061–6066, 1965.
[20]  M. Cyfert, “Kinetics of reaction of with hydrogen peroxide in neutral medium,” Inorganica Chimica Acta, vol. 98, no. 1, pp. 25–28, 1985.
[21]  C. Walling, “Fenton's reagent revisited,” Accounts of Chemical Research, vol. 8, no. 4, pp. 125–131, 1975.
[22]  A. Yildirim, A. Mavi, M. Oktay, A. A. Kara, O. F. Algur, and V. Bilaloglu, “Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 5030–5034, 2000.
[23]  I. C. F. R. Ferreira, P. Baptista, M. Vilas-Boas, and L. Barros, “Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity,” Food Chemistry, vol. 100, no. 4, pp. 1511–1516, 2007.
[24]  K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion,” Journal of Agricultural and Food Chemistry, vol. 40, no. 6, pp. 945–948, 1992.
[25]  N. R. Bhalodia, P. B. Nariya, R. N. Acharya, and V. J. Shukla, “Evaluation of in vitro antioxidant activity of flowers of Cassia fistula Linn,” International Journal of PharmTech Research, vol. 3, pp. 589–599, 2011.
[26]  I. I. Koleva, T. A. Van Beek, J. P. H. Linssen, A. De Groot, and L. N. Evstatieva, “Screening of plant extracts for antioxidant activity: a comparative study on three testing methods,” Phytochemical Analysis, vol. 13, no. 1, pp. 8–17, 2002.
[27]  I. F. F. Benzie and Y. T. Szeto, “Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 633–636, 1999.
[28]  M. H. Gordon, “The mechanism of antioxidant action in-vitro,” in Food Antioxidants, B. J. F. Hudson, Ed., pp. 1–18, Elsevier Applied Science, London, UK, 1990.
[29]  P. D. Duh, P. C. Du, and G. C. Yen, “Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage,” Food and Chemical Toxicology, vol. 37, no. 11, pp. 1055–1061, 1999.
[30]  C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Antioxidant properties of phenolic compounds,” Trends in Plant Science, vol. 4, pp. 304–309, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413