全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Factors Important to the Prioritization and Development of Successful Topical Microbicides for HIV-1

DOI: 10.1155/2012/781305

Full-Text   Cite this paper   Add to My Lib

Abstract:

Significant advancements in topical microbicide development have occurred since the prevention strategy was first described as a means to inhibit the sexual transmission of HIV-1. The lack of clinical efficacy of the first generation microbicide products has focused development attention on specific antiretroviral agents, and these agents have proven partially successful in human clinical trials. With greater understanding of vaginal and rectal virus infection, replication, and dissemination, better microbicide products and delivery strategies should result in products with enhanced potency. However, a variety of development gaps exist which relate to product dosing, formulation and delivery, and pharmacokinetics and pharmacodynamics which must be better understood in order to prioritize microbicide products for clinical development. In vitro, ex vivo, and in vivo models must be optimized with regard to these development gaps in order to put the right product at the right place, at the right time, and at the right concentration for effective inhibition of virus transmission. As the microbicide field continues to evolve, we must harness the knowledge gained from unsuccessful and successful clinical trials and development programs to continuously enhance our preclinical development algorithms. 1. Introduction Significant progress has been made in the development of topical anti-HIV microbicides since their initial description and development nearly 20 years ago. The first products developed for microbicide use were nonspecific agents which prevented HIV-1 from entering target cells by disrupting the viral membrane, including nonoxynol-9 (N-9), SAVVY (C31G), and Ushercell (cellulose sulphate) [1–3]. Clinical results with N-9 demonstrated enhanced rates of infection in the treated groups, suggesting the surfactant caused vaginal damage which allowed greater rates of infection [3]. SAVVY was prematurely discontinued due to the HIV incidence being half of the expected rate (one of the characteristics rendering the trial uninformative) [1]; however, it could not be conclusively determined that SAVVY promoted HIV infection as in the case of N-9. Ushercell was also discontinued due to a higher rate of infection compared to the placebo group [2]. Following the failure of the nonspecific surfactants, microbicide development has focused on the identification and development of specific antiretroviral (ARV) agents targeted at preventing early steps in virus replication such as virus attachment and entry and reverse transcription. Most recently, microbicide

References

[1]  P. J. Feldblum, A. Adeiga, R. Bakare et al., “SAVVY vaginal gel (C31G) for prevention of HIV infection: a randomized controlled trial in Nigeria,” PloS ONE, vol. 3, no. 1, Article ID e1474, 2008.
[2]  W. Tao, C. Richards, and D. Hamer, “Short communication: enhancement of HIV infection by cellulose sulfate,” AIDS Research and Human Retroviruses, vol. 24, no. 7, pp. 925–929, 2008.
[3]  L. Van Damme, “Effective of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial,” The Lancet, vol. 360, no. 9338, pp. 971–977, 2002.
[4]  C. Herrera and R. J. Shattock, “Potential use of protease inhibitors as vaginal and colorectal microbicides,” Current HIV Research, vol. 10, no. 1, pp. 42–52, 2012.
[5]  R. T. Triforiova, G. F. Doncel, and R. N. Fichorova, “Polyanionic microbicides modify toll-like receptor-mediated cervicovaginal immune responses7,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 4, pp. 1490–1500, 2009.
[6]  S. McCormack, G. Ramjee, A. Kamali et al., “PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial,” The Lancet, vol. 376, no. 9749, pp. 1329–1337, 2010.
[7]  Q. A. Karim, S. S. Abdool Karim, J. A. Frohlich, et al., “Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women,” Science, vol. 329, no. 5996, pp. 1168–1174, 2010.
[8]  MTN Statement on Decision to Discontinue Use of Tenofovir Gel in VOICE, a Major HIV Prevention Study in Women, http://www.mtnstopshiv.org/node/3909.
[9]  Studies , http://www.mtnstopshiv.org/studies.
[10]  R. W. Buckheit Jr., K. M. Watson, K. M. Morrow, and A. S. Ham, “Development of topical microbicides to prevent the sexual transmission of HIV,” Antiviral Research, vol. 85, no. 1, pp. 142–158, 2010.
[11]  C. Lackman-Smith, C. Osterling, K. Luckenbaugh et al., “Development of a comprehensive human immunodeficiency virus type 1 screening algorithm for discovery and preclinical testing of topical microbicides,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 5, pp. 1768–1781, 2008.
[12]  S. L. Hillier, “The vaginal microbial ecosystem and resistance to HIV,” AIDS Research and Human Retroviruses, vol. 14, supplement 1, pp. S17–S21, 1998.
[13]  B. Moller and P. Kaspersen, “The acicidity of the vagina,” in Vaginitis and Vaginosis, B. Horowitz and P. Marc, Eds., Wiley-Liss, New York, NY, USA, 1991.
[14]  A. M. Cole and A. L. Cole, “Antimicrobial polypeptides are key anti-hiv-1 effector molecules of cervicovaginal host defense,” American Journal of Reproductive Immunology, vol. 59, no. 1, pp. 27–34, 2008.
[15]  R. L. Gallo, M. Murakami, T. Ohtake, and M. Zaiou, “Biology and clinical relevance of naturally occurring antimicrobial peptides,” Journal of Allergy and Clinical Immunology, vol. 110, no. 6, pp. 823–831, 2002.
[16]  L. S. Martin, J. S. McDougal, and S. L. Loskoski, “Disinfection and inactivation of the human T lymphocytropic virus type III lymphadenopathy-associated virus,” Journal of Infectious Diseases, vol. 152, no. 2, pp. 400–403, 1985.
[17]  J. Ongradi, L. Ceccherini-Nelli, M. Pistello, S. Specter, and M. Bendinelli, “Acid sensitivity of cell-free and cell-associated HIV-1: clinical implications,” AIDS Research and Human Retroviruses, vol. 6, no. 12, pp. 1433–1436, 1990.
[18]  S. E. Godfrey, B. Voeller, D. J. Anderson et al., “Heterosexual transmission of HIV,” Journal of the American Medical Association, vol. 267, no. 14, pp. 1917–1919, 1992.
[19]  M. E. Qui?ones-Mateu, M. M. Lederman, Z. Feng et al., “Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication,” AIDS, vol. 17, no. 16, pp. F39–F48, 2003.
[20]  L. Sun, C. M. Finnegan, T. Kish-Catalone et al., “Human β-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection,” Journal of Virology, vol. 79, no. 22, pp. 14318–14329, 2005.
[21]  T. M. Schaefer, J. V. Fahey, J. A. Wright, and C. R. Wira, “Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C),” Journal of Immunology, vol. 174, no. 2, pp. 992–1002, 2005.
[22]  C. R. Wira, J. V. Fahey, M. Ghosh, M. V. Patel, D. K. Hickey, and D. O. Ochiel, “Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens,” American Journal of Reproductive Immunology, vol. 63, no. 6, pp. 544–565, 2010.
[23]  S. M. Wahl, T. B. McNeely, E. N. Janoff et al., “Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-1,” Oral Diseases, vol. 3, supplement 1, pp. S64–S69, 1997.
[24]  M. Ghosh, J. V. Fahey, Z. Shen et al., “Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies,” PloS ONE, vol. 5, no. 6, Article ID e11366, 2010.
[25]  S. M. Iqbal, T. B. Ball, P. Levinson et al., “Elevated elafin/trappin-2 in the female genital tract is associated with protection against HIV acquisition,” AIDS, vol. 23, no. 13, pp. 1669–1677, 2009.
[26]  P. Levinson, R. Kaui, J. Kimani et al., “Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition,” AIDS, vol. 23, no. 3, pp. 309–317, 2009.
[27]  G. F. Shust, S. Cho, M. Kim et al., “Female genital tract secretions inhibit herpes simplex infection: correlation with soluble mucosal immune mediators and impact of hormonal contraception,” American Journal of Reproductive Immunology, vol. 63, no. 5, p. 410, 2010.
[28]  M. J. Keller, P. M. Mesquita, N. M. Torres et al., “Postcoital bioavailability and antiviral activity of 0.5% PRO 2000 gel: implications for future microbicide clinical trials,” PloS ONE, vol. 5, no. 1, Article ID e8781, 2010.
[29]  M. H. Henderson, G. M. Couchman, D. K. Walmer et al., “Optical imaging and analysis of human vaginal coating by drug delivery gels,” Contraception, vol. 75, no. 2, pp. 142–151, 2007.
[30]  C. W. Hendrix, E. J. Fuchs, K. J. MacUra et al., “Quantitative imaging and sigmoidoscopy to assess distribution of rectal microbicide surrogates,” Clinical Pharmacology and Therapeutics, vol. 83, no. 1, pp. 97–105, 2008.
[31]  R. F. Omar, S. Trottier, G. Brousseau, A. Lamarre, Alexandre Gagnon, and M. G. Bergeron, “Distribution of a vaginal gel (Invisible Condom) before, during and after simulated sexual intercourse and its persistence when delivered by two different vaginal applicators: a magnetic resonance imaging study,” Contraception, vol. 77, no. 6, pp. 447–455, 2008.
[32]  E. N. Dunmire, A. M. Plenys, and D. F. Katz, “Spectrophotometric analysis of molecular transport in gels,” Journal of Controlled Release, vol. 57, no. 2, pp. 127–140, 1999.
[33]  P. M. Gorbach, L. E. Manhart, K. L. Hess, B. P. Stoner, D. H. Martin, and K. K. Holmes, “Anal intercourse among young heterosexuals in three sexually transmitted disease clinics in the united states,” Sexually Transmitted Diseases, vol. 36, no. 4, pp. 193–198, 2009.
[34]  S. C. Kalichman, L. C. Simbayi, D. Cain, and S. Jooste, “Heterosexual anal intercourse among community and clinical settings in Cape Town, South Africa,” Sexually Transmitted Infections, vol. 85, no. 6, pp. 411–415, 2009.
[35]  A. T. Haase, “Early events in sexual transmission of hiv and siv and opportunities for interventions,” Annual Review of Medicine, vol. 62, pp. 127–139, 2011.
[36]  A. Kreutei and U. Wieland, “Human papillomavirus-associated diseases in HIV-infected men who have sex with men,” Current Opinion in Infectious Diseases, vol. 22, no. 2, pp. 109–114, 2009.
[37]  J. S. Smith, S. Moses, M. G. Hudgens et al., “Increased risk of HIV acquisition among kenyan men with human papillomavirus infection,” Journal of Infectious Diseases, vol. 201, no. 11, pp. 1677–1685, 2010.
[38]  I. J. Pandya and J. Cohen, “The leukocytic reaction of the human uterine cervix to spermatozoa,” Fertility and Sterility, vol. 43, no. 3, pp. 417–421, 1985.
[39]  L. A. Thompson, C. L. R. Barratt, A. E. Bolton, and I. D. Cooke, “The leukocytic reaction of the human uterine cervix,” American Journal of Reproductive Immunology, vol. 28, no. 2, pp. 85–89, 1992.
[40]  G. F. Doncel, T. Joseph, and A. R. Thurman, “Role of Semen in HIV-1 Transmission: inhibitor or facilitator?” American Journal of Reproductive Immunology, vol. 65, no. 3, pp. 292–301, 2011.
[41]  B. G. Ludman, “Human seminal plasma protein allergy: a diagnosis rarely considered,” Journal of Obstetric, Gynecologic, and Neonatal Nursing, vol. 28, no. 4, pp. 359–363, 1999.
[42]  S. K. Lai, K. Hida, S. Shukair et al., “Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus,” Journal of Virology, vol. 83, no. 21, pp. 11196–11200, 2009.
[43]  S. K. Lai, Y. Y. Wang, K. Hida, R. Cone, and J. Hanes, “Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 2, pp. 598–603, 2010.
[44]  J. A. Turpin, “Topical microbicides to prevent the transmission of HIV: formulation gaps and challenges,” Drug Delivery and Translational Research, vol. 1, no. 3, pp. 194–200, 2011.
[45]  B. E. Lai, A. R. Geonnotti, M. G. DeSoto, D. C. Montefiori, and D. F. Katz, “Semi-solid gels function as physical barriers to human immunodeficiency virus transport in vitro,” Antiviral Research, vol. 88, no. 2, pp. 143–151, 2010.
[46]  B. E. Lai, M. H. Henderson, J. J. Peters, D. K. Walmer, and D. F. Katz, “Transport theory for HIV diffusion through in vivo distributions of topical microbicide gels,” Biophysical Journal, vol. 97, no. 9, pp. 2379–2387, 2009.
[47]  N. A. Louissaint, E. J. Fuchs, R. P. Bakshi et al., “Distribution of cell-free and cell-associated HIV surrogates in the female genital tract after simulated vaginal intercourse,” Journal of Infectious Diseases, vol. 205, no. 5, pp. 725–732, 2012.
[48]  D. M. Butler, W. Delport, S. L. K. Pond et al., “The origins of sexually transmitted HIV among men who have sex with men,” Science Translational Medicine, vol. 2, no. 18, Article ID 18re1, 2010.
[49]  R. J. Shattock and J. P. Moore, “Inhibiting sexual transmission of HIV-1 infection,” Nature Reviews, vol. 1, no. 1, pp. 25–34, 2003.
[50]  J. F. Salazar-Gonzalez, M. G. Salazar, B. F. Keele et al., “Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection,” Journal of Experimental Medicine, vol. 206, no. 6, pp. 1273–1289, 2009.
[51]  G. F. Doncel and M. R. Clark, “Preclinical evaluation of anti-HIV microbicide products: new models and biomarkers,” Antiviral Research, vol. 88, supplement, pp. S10–S18, 2010.
[52]  D. L. Patton, Y. T. C. Sweeney, and K. J. Paul, “A summary of preclinical topical microbicide rectal safety and efficacy evaluations in a pigtailed macaque model,” Sexually Transmitted Diseases, vol. 36, no. 6, pp. 350–356, 2009.
[53]  A. Saifuddin, “Intravaginal administration of 6% cellulose sulfate (CS) gel prevented systemic infection in rhesus macaques in a multiple dose R5/X4 SHIV vaginal challenge model,” in Microbicides 2008, New Delhi, India, 2008.
[54]  U. M. Parikh, C. Dobard, S. Sharma et al., “Complete protection from repeated vaginal simian-human immunodeficiency virus exposures in macaques by a topical gel containing tenofovir alone or with emtricitabine,” Journal of Virology, vol. 83, no. 20, pp. 10358–10365, 2009.
[55]  P. W. Denton, J. D. Estes, Z. Sun et al., “Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice,” PLoS Medicine, vol. 5, no. 1, Article ID e16, 2008.
[56]  Z. Sun, P. W. Denton, J. D. Estes et al., “Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 705–714, 2007.
[57]  K. B. Collins, B. K. Patterson, G. J. Naus, D. V. Landers, and P. Gupta, “Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract,” Nature Medicine, vol. 6, no. 4, pp. 475–479, 2000.
[58]  J. E. Cummins Jr., J. Guarner, L. Flowers et al., “Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 5, pp. 1770–1779, 2007.
[59]  P. Greenhead, P. Hayes, P. S. Watts, K. G. Laing, G. E. Griffin, and R. J. Shattock, “Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides,” Journal of Virology, vol. 74, no. 12, pp. 5577–5586, 2000.
[60]  B. E. Beer, G. F. Doncel, F. C. Krebs et al., “In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 2, pp. 713–723, 2006.
[61]  S. Niruthisard, R. E. Roddy, and S. Chutivongse, “The effects of frequent nonoxynol-9 use on the vaginal and cervical mucosa,” Sexually Transmitted Diseases, vol. 18, no. 3, pp. 176–179, 1991.
[62]  K. H. Mayer, S. A. Karim, C. Kelly et al., “Safety and tolerability of vaginal PRO 2000 Gel in sexually active HIV-uninfected and abstinent HIV-infected women,” AIDS, vol. 17, no. 3, pp. 321–329, 2003.
[63]  D. L. Patton, Y. T. C. Sweeney, L. K. Rabe, and S. L. Hillier, “Rectal applications of nonoxynol-9 cause tissue disruption in a monkey model,” Sexually Transmitted Diseases, vol. 29, no. 10, pp. 581–587, 2002.
[64]  D. M. Phillips, C. L. Taylor, V. R. Zacharopoulos, and R. A. Maguire, “Nonoxynol-9 causes rapid exfoliation of sheets of rectal epithelium,” Contraception, vol. 62, no. 3, pp. 149–154, 2000.
[65]  L. Van Damme, A. Profy, M. Laga et al., “A phase I study of a novel potential intravaginal microbicide, PRO 2000, in healthy sexually inactive women,” Sexually Transmitted Infections, vol. 76, no. 2, pp. 126–130, 2000.
[66]  A. Mahalingam, A. P. Simmons, S. R. Ugaonkar et al., “Vaginal microbicide gel for delivery of IQP-0528, a pyrimidinedione analog with a dual mechanism of action against HIV-1,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 4, pp. 1650–1660, 2011.
[67]  L. C. Rohan, B. J. Moncla, R. P. Kunjara Na Ayudhya et al., “In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide,” PloS ONE, vol. 5, no. 2, Article ID e9310, 2010.
[68]  P. M. M. Mesquita, N. Cheshenko, S. S. Wilson et al., “Disruption of tight junctions by cellulose sulfate facilitates HIV infection: model of microbicide safety,” Journal of Infectious Diseases, vol. 200, no. 4, pp. 599–608, 2009.
[69]  K. M. Watson, C. E. Buckheit, and R. W. Buckheit Jr., “Comparative evaluation of virus transmission inhibition by dual-acting pyrimidinedione microbicides using the microbicide transmission and sterilization assay,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 8, pp. 2787–2796, 2008.
[70]  J. Balzarini, A. Karlsson, M. J. Perez-Perez, M. J. Camarasa, and E. De Clercq, “Knocking-out concentrations of HIV-1-specific inhibitors completely suppress HIV-1 infection and prevent the emergence of drug-resistant virus,” Virology, vol. 196, no. 2, pp. 576–585, 1993.
[71]  E. Greene, G. Batona, J. Hallad, S. Johnson, S. Neema, and E. E. Tolley, “Acceptability and adherence of a candidate microbicide gel among high-risk women in Africa and India,” Culture, Health and Sexuality, vol. 12, no. 7, pp. 739–754, 2010.
[72]  VOICE StudyDesign, http://www.niaid.nih.gov/news/qa/pages/voiceqa.aspx.
[73]  NIH Discontinues Tenofovir Vaginal Gel in ‘VOICE’ HIV Prevention Study, 2011, http://www.nih.gov/news/health/nov2011/niaid-25.htm.
[74]  S. H. Vermund and L. Van Damme, “HIV prevention in women: next steps,” Science, vol. 331, no. 6015, p. 284, 2011.
[75]  R. K. Malcolm, K.-L. Edwards, P. Kiser, J. Romano, and T. J. Smith, “Advances in microbicide vaginal rings,” Antiviral Research, vol. 88, supplement, pp. S30–S39, 2010.
[76]  A. Nel, S. Smythe, K. Young et al., “Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 4, pp. 416–423, 2009.
[77]  T. Lane, A. Pettifor, S. Pascoe, A. Fiamma, and H. Rees, “Heterosexual anal intercourse increases risk of HIV infection among young South African men,” AIDS, vol. 20, no. 1, pp. 123–125, 2006.
[78]  I. McGowan, “Rectal microbicides: can we make them and will people use them?” AIDS and Behavior, vol. 15, supplement, pp. S66–S71, 2011.
[79]  K. M. Morrow and M. S. Ruiz, “Assessing microbicide acceptability: a comprehensive and integrated approach,” AIDS and Behavior, vol. 12, no. 2, pp. 272–283, 2008.
[80]  D. L. Patton, Y. T. Cosgrove Sweeney, J. E. Balkus et al., “Preclinical safety assessments of UC781 anti-human immunodeficiency virus topical microbicide formulations,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 5, pp. 1608–1615, 2007.
[81]  S. R. Tabet, C. Surawicz, S. Horton et al., “Safety and toxicity of Nonoxynol-9 gel as a rectal microbicide,” Sexually Transmitted Diseases, vol. 26, no. 10, pp. 564–571, 1999.
[82]  P. Anton, R. Cranston, and A. Carballo-Dieguez, “RMP-02/MTN-006: a phase 1 placebo-controlled trial of rectally applied 1% vaginal TFV gel with comparison to oral TDF,” in Proceedings of the 18th Conference on Retroviruses and Opportunistic Infections, Boston, Mass, USA, February 2011.
[83]  L. Wang, R. L. Schnaare, C. Dezzutti, P. A. Anton, and L. C. Rohan, “Rectal microbicides: clinically relevant approach to the design of rectal specific placebo formulations,” AIDS Research and Therapy, vol. 8, article 12, 2011.
[84]  C. Dezzutti, “TFV Gel reformulation results in improved product safety for rectal application,” in Proceedings of the 18th Conference on Retroviruses and Opportunisitic Infections, Boston, Mass, USA, 2011.
[85]  B. Y. Holt, M. Kilbourne-Brook, A. Stone, P. Harrison, and W. C. Shields, “Multipurpose prevention technologies for sexual and reproductive health: gaining momentum and promise,” Contraception, vol. 81, no. 3, pp. 177–180, 2010.
[86]  D. R. Friend and G. F. Doncel, “Combining prevention of HIV-1, other sexually transmitted infections and unintended pregnancies: development of dual-protection technologies,” Antiviral Research, vol. 88, supplement, pp. S47–S54, 2010.
[87]  A. R. Thurman, M. R. Clark, and G. F. Doncel, “Multipurpose prevention technologies: biomedical tools to prevent HIV-1, HSV-2, and unintended pregnancies,” Infectious Diseases in Obstetrics and Gynecology, vol. 2011, Article ID 429403, 10 pages, 2011.
[88]  D. L. Jones, S. M. Weiss, N. Chitalu et al., “Acceptability and use of sexual barrier products and lubricants among HIV-seropositive Zambian men,” AIDS Patient Care and STDs, vol. 22, no. 12, pp. 1015–1020, 2008.
[89]  A. Nath and S. Garg, “Microbicides in India-present and future,” Indian Journal of Medical Microbiology, vol. 27, no. 3, pp. 251–253, 2009.
[90]  M. Bolton, A. van der Straten, and C. R. Cohen, “Probiotics: potential to prevent HIV and sexually transmitted infections in women,” Sexually Transmitted Diseases, vol. 35, no. 3, pp. 214–225, 2008.
[91]  K. M. Morrow and C. Hendrix, “Clinical evaluation of microbicide formulations,” Antiviral Research, vol. 88, supplement, pp. S40–S46, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413